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1

Divisibility

In this chapter, we will explore divisibility, the building block of number theory.
This chapter will introduce many important concepts that will be used throughout
the rest of the book. Divisibility is an extremely fundamental concept in number
theory, and has applications including puzzles, encrypting messages, computer se-
curity, and many algorithms. An example is checking whether Universal Product
Codes (UPC) or International Standard Book Number (ISBN) codes are legiti-
mate.

Figure 1.1: An example of a UPC code.

In order for the 12 digit UPC code above to be legitimate, we order the digits
x1, x2, x3, · · · , x12. The expression

3x1 + x2 + 3x3 + x4 + 3x5 + x6 + 3x7 + x8 + 3x9 + x10 + 3x11 + x12

then must be divisible by 10. We indeed verify that the above code gives

0×3+3×1+6×3+0×1+0×3+0×1+2×3+9×1+1×3+4×1+5×3+2×1 = 60,

which is divisible by 10. Therefore the above UPC code is valid.
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1.1 Euclidean and Division Algorithm

When the concept of division is first introduced in primary school, quotients and
remainders are used. We begin with a simple picture that should be familiar to
the reader, and we explore its relevance.

Figure 1.2: Division in primary school.
Source: CalculatorSoup

The process above used to divide 487 by 32 can be formalized through the
division algorithm.

Theorem 1.1.1 (Division Algorithm). For every integer pair a, b, there exists
distinct integer quotient and remainders, q and r, that satisfy

a = bq + r, 0 ≤ r < b

Proof. We will prove that this is true for when a and b are positive. The other
cases when one or both of a and b are negative follow very similarly. There are
two parts in this proof:

• Proving that for every pair (a, b) we can find a corresponding quotient and
remainder.

• Proving that this quotient and remainder pair are unique.

For proving the existance of the quotient and remainder, given two integers a
and b with varying q, consider the set

{a− bq with q an integer and a− bq ≥ 0}.
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By the well-ordering principle we know that this set must have a minimum, say
when q = q1. Clearly from the condition on the set, we must have a−bq1 = r ≥ 0.
It now serves to prove that a− bq1 = r < b. For the sake of contradiction, assume
that a− bq1 ≥ b. However, then

a− b(q1 + 1) ≥ 0,

therefore it also should be a member of the above set. Furthermore,

a− b(q1 + 1) < a− bq1,

contradicting the minimality of q1. Therefore, it is impossible for a− bq1 ≥ b, and
we have 0 ≤ a− bq1 < b.

The second part of this proof is to show that the quotient and remainder are
unique. Assume for the sake of contradiction that a can be represented in two
ways:

a = bq1 + r1 = bq2 + r2

b(q1 − q2) = r2 − r1.

This implies that b | r2 − r1. However,

b > r2 − r1 > −b

since 0 ≤ r1, r2 < b. Since r2− r1 is a multiple of b, we must have r2− r1 = 0 =⇒
r2 = r1 and q2 = q1.

For instance, when a = 102 and b = 18, applying the division algorithm
gives 102 = 18 × 5 + 12, therefore q = 5 and r = 12. Furthermore, note that
gcd(a, b) = gcd(102, 18) = 6 and gcd(b, r) = gcd(18, 12) = 6. This leads us to our
next interesting result.

Theorem 1.1.2 (Euclid). For natural numbers a, b, we use the division al-
gorithm to determine a quotient and remainder, q, r, such that a = bq + r.
Then gcd(a, b) = gcd(b, r).

Proof. I claim that the set of common divisors between a and b is the same as
the set of common divisors between b and r. If d is a common divisor of a and b,
then since d divides both a and b, d divides all linear combinatinations of a and
b. Therefore, d | a− bq = r, meaning that d is also a common divisor of b and r.

Conversely, if d is a common divisor of b and r, then d is a common divisor
of all linear combinations of b and r, therefore, d | bq + r = a. Hence, d is also a
common divisor of a and b.

We have established that the two sets of common divisors are equivalent,
therefore, the greatest common divisor must be equivalent.
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Corollary 1.1.1 (Euclidean Algorithm). For two natural a, b, a > b, to find
gcd(a, b) we use the division algorithm repeatedly

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3

· · ·
rn−2 = rn−1qn + rn

rn−1 = rnqn+1.

Then we have gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rn−1, rn) = rn.

Proof. For each of the equations above, simply use Euclid’s Theorem to arrive at
the equality chain.

Example 1.1.1. Find gcd(110, 490).

Solution.

490 = 110× 4 + 50

110 = 50× 2 + 10

50 = 10× 5.

The division algorithm also works in Q[x], the set of polynomials with rational
coefficients, and R[x], the set of all polynomials with real coefficients. For the sake
of our study, we will only focus on Q[x]. If a(x) and b(x) are two polynomials,
then we can find a unique quotient and remainder polynomial, q(x), r(x) ∈ Q[x],
such that

a(x) = b(x)q(x) + r(x), deg(r) < deg(b) or r(x) = 0.

We present a proof after an example. We can find q(x) and r(x) using long division
for polynomials.

Example 1.1.2. Calculate q(x) and r(x) such that a(x) = b(x)q(x) + r(x)
for a(x) = x4 + 3x3 + 10 and b(x) = x2 − x.
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Solution. We begin by dividing the leading term of a(x) by the leading term of
b(x): x4

x2
= x2. Therefore, we multiply b(x) by x2 and subtract the result from

a(x):
x4 + 3x3 + 10 = (x2 − x)(x2) + (4x3 + 10).

Now, in order to get rid of the 4x3 term in the remainder, we have to divide this by
the leading term of b(x), x2: 4x3

x2
= 4x. We add this to the quotient and subtract

this multiplication from the remainder in order to get rid of the cubic term:

x4 + 3x3 + 10 = (x2 − x)(x2 + 4x) + (4x2 + 10.)

One may be tempted to stop here, however, the remainder and b(x) are both
quadratic and we need deg(r(x)) < deg(b(x)). Therefore, in order to remove the
quadratic term from the remainder, we divide this term, 4x2, by the leading term
of b(x), x2: 4x2

x2
= 4. We then add this to the quotient, and subtract, in order to

get
x4 + 3x3 + 10 = (x2 − x)(x2 + 4x+ 4) + (4x+ 10).

Therefore, q(x) = x2+4x+4 and r(x) = 4x+10. We verify that indeed deg(r(x)) =
1 < deg(b(x)) = 2, therefore, we are finished.

Note: The numbers will not always come out as nicely as they did in the above
expression, and we will occasionally have fractions.

Theorem 1.1.3. For two polynomials, a(x), b(x) ∈ Q[x], prove that there
exists a unique quotient and remainder polynomial, q(x) and r(x), such that

a(x) = b(x)q(x) + r(x), deg(r) < deg(b) or r(x) = 0.

Proof. For any two polynomials a(x) and b(x), we can find q(x) and r(x) such
that a(x) = b(x)q(x) + r(x) by repeating the procedure above. The main idea is
to eliminate the leading term of r(x) repeatedly, until deg(r(x)) < deg(b(x)).

• Divide the leading term of a(x) by the leading term of b(x) in order to obtain
the polynomial q1(x). In the example above, we found q1(x) = x4

x2
= x2 and

r1(x) = 4x3 + 10. Then,

a(x) = b(x)q1(x) + r1(x).

• Divide the leading term of r1(x) by the leading term of b(x) in order to obtain
the polynomial q2(x). In the example above, we found q2(x) = 4x3

x2
= 4x.

Then, add this quotient to q1(x) and subtract in order to find r2(x):

a(x) = b(x) (q1(x) + q2(x)) + r2(x).

In the example above, r2(x) = 4x2 + 10.
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• Repeat the above step of dividing the leading term of rj(x) by the leading
term of b(x) and adding this quotient to the previous quotients. So long as
deg(rj(x)) ≥ deg(b(x)), this will decrease the degree of the remainder poly-
nomial by eliminating its leading term. Stop once deg(rj(x)) < deg(b(x)),

at which point q(x) =

j∑
i=1

(qi(x)) and r(x) = rj(x).

For the uniqueness part, note that if there exists distinct quotients q1(x),
q2(x) and remainders r1(x), r2(x) with deg(r1(x)) < deg(b(x)) and deg(r2(x)) <
deg(b(x)) found through the division algorithm, we will arrive at a contradiction:

a(x) = b(x)q1(x) + r1(x)

a(x) = b(x)q2(x) + r2(x)

b(x)(q1(x)− q2(x)) = r2(x)− r1(x).

However, assuming that q1(x) and q2(x) are distinct, we have

deg [b(x)(q1(x)− q2(x)] ≥ deg(b(x)).

On the other hand, since deg(r1(x)) < deg(b(x)) and deg(r2(x)) < deg(b(x)), we
know that

deg (r2(x)− r1(x)) < deg(b(x)).

Therefore, it is impossible for the left hand side of the equation above to equal
the right hand side since the degrees of the polynomials are different.

Using the division algorithm for polynomials, we can extend Euclid’s Algo-
rithm for polynomials. Note that by convention, the greatest common divisor of
two polynomials is chosen to be the monic polynomial of highest degree that
divides both polynomials. The word monic means that the leading coefficient is
1. For instance, gcd(x2 − 4, x− 2) = x− 2.

Using the same reasoning we used for Euclid’s theorem above, we can arrive
at a similar theorem for polynomials.

Theorem 1.1.4. If a(x) = b(x)q(x) + r(x) with deg(r(x)) < deg(b(x)), then

gcd(a(x), b(x)) = gcd(b(x), r(x)).

Proof. We invoke the same method we used above by showing that the set of
common divisors between a(x) and b(x) is the same as the set of common divisors
between b(x) and r(x).
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Extending this method, we can calculate gcd(a(x), b(x)):

a(x) = b(x)q1(x) + r1(x)

b(x) = r1(x)q2(x) + r2(x)

r1(x) = r2(x)q3(x) + r3(x)

· · ·
rn−1(x) = rn(x)qn+1(x) + rn+1(x)

rn(x) = rn+1(x)qn+2(x).

Then we have

gcd(a(x), b(x)) = gcd(b(x), r1(x)) = gcd(r1(x), r2(x)) = · · · = rn+1(x),

the final non-zero remainder.

Example 1.1.3. Find the greatest common divisor of x4 + x3 − 4x2 + x + 5
and x3 + x2 − 9x− 9.

Solution. Using polynomial division, we find that

x4 + x3 − 4x2 + x+ 5 = (x3 + x2 − 9x− 9)x+
(
5x2 + 10x+ 5

)
.

Next, we have to divide x3 + x2 − 9x− 9 by 5x2 + 10x+ 5. We find that

x3 + x2 − 9x− 9 = (5x2 + 10x+ 5)

(
x

5
− 1

5

)
+ (−8x− 8) .

Finally, we divide 5x2 + 10x+ 5 by −8x− 8 and find that

5x2 + 10x+ 5 = (−8x− 8)

[
−5

8
(x+ 1)

]
.

This is the final non-zero remainder. However, remembering that the greatest
common divisor of two polynomials must be monic, we get rid of the −5

8
term and

determine that gcd(x4 + x3 − 4x2 + x+ 5, x3 + x2 − 9x− 9) = x+ 1 .
As a quick verification, we note that x = −1 is a root of both of the polynomials

above.

We now move onto some contest style questions that involve the Euclidan
Algorithm or the Division Algorithm.
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Example 1.1.4 (Duke). What is the sum of all integers n such that n2+2n+2
divides n3 + 4n2 + 4n− 14?

Solution. Using long division for polynomials, we find that

n3 + 4n2 + 4n− 14 = (n2 + 2n+ 2)(n+ 2) + (−2n− 18).

In order for n2 + 2n + 2 to divide n3 + 4n2 + 4n − 14, it must also divide the
remainder:

(n2 + 2n+ 2) | (−2n− 18).

The only way that this is possible is either when | − 2n − 18| ≥ |n2 + 2n + 2| or
when −2n−18 = 0. In the first case, this inequality only holds when −4 ≤ n ≤ 4.
We test all n within this range, and determine that the values of n which work
are n = −4,−2,−1, 0, 1, 4. In the second case, we additionally find that n = −9
works. Therefore, the sum is −11 .

Example 1.1.5 (AIME 1986). What is the largest positive integer n such
that n3 + 100 is divisible by n+ 10?

Solution. Let

n3 + 100 = (n+ 10)
(
n2 + an+ b

)
+ c

= n3 + n2 (10 + a) + n (b+ 10a) + 10b+ c.

Equating coefficients yields 
10 + a = 0

b+ 10a = 0

10b+ c = 100.

Solving this system yields a = −10, b = 100, and c = −900. Therefore, by the
Euclidean Algorithm, we get

n+ 10 = gcd(n3 + 100, n+ 10) = gcd(−900, n+ 10) = gcd(900, n+ 10)

The maximum value for n is hence n = 890 .
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Example 1.1.6 (AIME 1985). The numbers in the sequence 101, 104, 109,
116, . . . are of the form an = 100+n2, where n = 1, 2, 3, . . . . For each n, let
dn be the greatest common divisor of an and an+1. Find the maximum value
of dn as n ranges through the positive integers.

Solution. Since dn = gcd (100 + n2, 100 + (n+ 1)2), dn must divide the difference
between these two, or dn | (100 + (n+ 1)2)− (100 + n2) = 2n+ 1. Therefore

dn = gcd(100 + n2, 100 + (n+ 1)2) = gcd(n2 + 100, 2n+ 1).

Since 2n + 1 will always be odd, 2 will never be a common factor, hence we can
multiply n2 + 100 by 4 without affecting the greatest common divisor:

dn = gcd(4n2 + 400, 2n+ 1) = gcd
(
4n2 + 400− (2n+ 1)(2n− 1), 2n+ 1

)
= gcd (401, 2n+ 1) .

Therefore, in order to maximize the value of dn, we set n = 200 to give a greatest
common divisor of 401 .

The following theorem is very useful for problems involving exponents.

Theorem 1.1.5. For natural numbers a,m, n, gcd(am−1, an−1) = agcd(m,n)−
1.

Outline. Note that by the Euclidean Algorithm, we have

gcd(am − 1, an − 1) = gcd(am − 1− am−n(an − 1), an − 1)

= gcd(am−n − 1, an − 1).

We can continue to reduce the exponents using the Euclidean Algorithm, until we
ultimately have gcd(am − 1, an − 1) = agcd(m,n) − 1.

Example 1.1.7. Let the integers an and bn be defined by the relationship

an + bn
√

2 =
(

1 +
√

2
)n
.

for all integers n ≥ 1. Prove that gcd(an, bn) = 1 for all integers n ≥ 1.
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Solution. We use induction. For the base case, note that when n = 1, we have
a1 = 1, b1 = 1, therefore, gcd(a1, b1) = 1.

For the inductive hypothesis, we assume that it holds for n = k, therefore,

when ak+bk
√

2 =
(
1 +
√

2
)k

, we have gcd(ak, bk) = 1. We now show that it holds
for n = k + 1. Note that

ak+1 + bk+1 =
(

1 +
√

2
)k+1

=
(

1 +
√

2
)(

1 +
√

2
)k

=
(

1 +
√

2
)(

ak + bk
√

2
)

= (ak + 2bk) +
√

2 (ak + bk) .

Therefore, ak+1 = ak + 2bk and bk+1 = ak + bk. It is now left to show that
gcd(ak+1, bk+1) = 1. Note that by the Euclidean Algorithm,

gcd(ak + 2bk, ak + bk) = gcd(bk, ak + bk) = gcd(bk, ak) = 1.

Therefore, by induction, we have shown that n = k =⇒ n = k + 1, and we are
done.

Example 1.1.8. If p is an odd prime, and a, b are relatively prime positive
integers, prove that

gcd

(
a+ b,

ap + bp

a+ b

)
= 1 or p.

Solution. We attempt to simplify the problem to the case when b = 1. Our goal
is to now show that

gcd(a+ 1,
ap + 1

a+ 1
) = 1or p.

Factoring gives

ap + 1

a+ 1
= ap−1 − ap−2 + ap−3 − ap−4 + · · · − a+ 1.

In order to calculate gcd(a+ 1, a
p+1
a+1

), we attempt to reduce the above expression
mod a + 1. Using the fact that p is an odd prime, we know that p − 1 is even,
therefore:

ap + 1

a+ 1
= ap−1 − ap−2 + · · ·+ a2x − a2x−1 + · · · − a+ 1

≡ (−1)p−1 − (−1)p−2 + · · ·+ (−1)2x − (−1)2x−1 − a+ 1 (mod a+ 1)

≡ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
p terms

≡ p (mod a+ 1).
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Now, by the Euclidan Algorithm, we have

gcd(a+ 1,
ap + 1

a+ 1
) = gcd(a+ 1, p).

Since p is a prime, the above expression can only be equal to 1 or p, depending on
a. We have now solved the problem for b = 1. We wish to generalize the method
to any b.

Using a similar factorization as above, we have

ap + bp

a+ b
= ap−1 − ap−2b+ ap−3b2 − ap−4b3 + · · · − abp−2 + bp−1.

In order to invoke the Euclidean Algorithm, we wish to evaluate this expression
mod a + b. Using the fact that a ≡ −b (mod a + b) and that p − 1 is even, we
can simplify as follows:

ap−1 − ap−2b+ ap−3b2 − · · ·+ bp−1 ≡ (−b)p−1 − (−b)p−2 b+ (−b)p−3 b2 + · · ·

≡ (−1)p−1

bp−1 + bp−1 + · · ·+ bp−1︸ ︷︷ ︸
p terms


≡ pbp−1 (mod a+ b).

Therefore, by the Euclidean Algorithm, we arrive at

gcd

(
ap + bp

a+ b
, a+ b

)
= gcd(pbp−1, a+ b).

Now, in the problem statement, it was given that a and b are relatively prime.
Hence, similarly, gcd(b, a + b) = 1, and we can simplify the above expression
further:

gcd(pbp−1, a+ b) = gcd(p, a+ b) = 1 or p.

Example 1.1.9 (Japan 1996). Let m,n be relatively prime positive integers.
Calculate gcd(5m + 7m, 5n + 7n).

Solution. Without Loss Or Generality (WLOG), let m > n. Note that

5m + 7m = (5n + 7n)
(
5m−n + 7m−n

)
− 5n7m−n − 5m−n7n.

We now have two cases.
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• If m < 2n, then factor out 5m−n7m−n from the right hand side of the above
equation in order to get

5m + 7m = (5n + 7n)
(
5m−n + 7m−n

)
− 5m−n7m−n

(
52n−m + 72n−m) .

Therefore, by the Euclidean Algorithm,

gcd(5m + 7m, 5n + 7n) = gcd
(
5m−n7m−n(52n−m + 72n−m), 5n + 7n

)
= gcd(52n−m + 72n−m, 5n + 7n).

Since 5 and 7 both do not divide 5n + 7n.

• If m > 2n, then factor out 5n7n from the right hand side of the first equation
in order to get

5m + 7m = (5n + 7n)
(
5m−n + 7m−n

)
− 5n7n

(
5m−2n + 7m−2n

)
.

Therefore, by the Euclidean Algorithm, and using the same logic as above,

gcd(5m + 7m, 5n + 7n) = gcd(5n + 7n, 5m−2n + 7m−2n).

Let am,n = gcd(5m + 7m, 5n + 7n) for simplicity. In summary from the two cases
above, if m < 2n, then am,n = an,2n−m. On the other hand, if m > 2n, then
am,n = an,m−2n.

If, for instance, we begin with m = 12 and n = 5, then the chain will go as
follows:

a12,5 → a2,5 → a2,1 → a0,1.

Note that each step in the process decreases the sum of the two values, and
furthermore, the parity of the sum remains the same at each step. Since m and
n are relatively prime and the process is invariant mod 2, if m+ n is odd, trying
out a few other cases will reveal that following this chain always give

am,n = a0,1 = gcd(50 + 70, 51 + 71) = 2.

On the other hand, if for instance m = 13 and n = 5, then the chain will go as
follows:

a13,5 → a3,5 → a3,1 → a1,1.

If m+ n is even, then we will always have

am,n = a1,1 = gcd(51 + 71, 51 + 71) = 12.

In conclusion,

gcd(5m + 7m, 5n + 7n) =

{
12 if 2 | m+ n

2 if 2 - m+ n
.



1.2. Bezout’s Identity 16

1.2 Bezout’s Identity

One of the immediate applications of the Euclidean Algorithm is Bezout’s Identity
(sometimes also called Bezout’s Lemma).

Theorem 1.2.1 (Bezout’s Identity). For a, b natural, there exist x, y ∈ Z
such that ax+ by = gcd(a, b).

Proof. We present two proofs.
Euclidean Algorithm: Run the Euclidean Algorithm backwards.

gcd(a, b) = rn−2 − rn−1qn
= rn−2 − (rn−3 − rn−2qn−1) qn
= rn−2(1 + qnqn−1)− rn−3 (qn)

= · · ·
= ax+ by.

Where x and y are some combination of the quotients. The two variables run
through at every step in the equation are:

(rn−2, rn−1)→ (rn−2, rn−3)→ (rn−4, rn−3) · · · → (b, r1)→ (a, b).

Extremal Method: Consider the set

S = {ax+ by > 0 with x, y integers}.

By the well-ordering principle, this set must have a minimum, say d = min(S).
Since d is a member of the set, there exists integers x1 and y1 such that d =
ax1 + by1. Now, we go about proving that d = gcd(a, b). To begin, we must show
that d is a divisor of both a. By the division algorithm, say

a = dq + r, 0 ≤ r < d.

Substituting d = ax1 + by1 into the above equation gives

a = d(ax1 + by1) + r =⇒ r = a(1− dx1) + b(−dy1).

Therefore, if r is positive, then r is a member of the set S above. However, we
know that 0 ≤ r < d, contradicting the minimality of d. Hence, we must have
r = 0 =⇒ d | a. Similarly, we can show that d | b. We have now shown that d is
a common divisor of a and b.

It is now left to show that d is the greatest common divisor of a and b. Indeed,
let d1 be another common divisor of a and b. Therefore, d1 also divides any linear
combination of a and b, specifically d1 | ax1 + by1 = d. Therefore, every common
divisor of a and b divides d, therefore, d = gcd(a, b) and we are finished.
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Example 1.2.1. Express 5 as a linear combination of 45 and 65.

Solution. We use the Euclidean Algorithm in reverse. Using the Euclidean Algo-
rithm on 45 and 65, we arrive at

65 = 45× 1 + 20

45 = 20× 2 + 5

20 = 5× 4.

Therefore, we run the process in reverse to arrive at

5 = 45− 20× 2

= 45− (65− 45× 1)2

= 45× 3− 65× 2.

Example 1.2.2. Express 10 as a linear combination of 110 and 380.

Solution. We again, use the Euclidean Algorithm to arrive at

380 = 110× 3 + 50

110 = 50× 2 + 10

50 = 10× 5.

Now, running the Euclidean Algorithm in reverse gives us

10 = 110− 50× 2

= 110− (380− 110× 3)× 2

= 7× 110− 2× 380.

Example 1.2.3. Express 3 as a linear combination of 1011 and 11, 202.

Solution. We use the Euclidean Algorithm to arrive at

11202 = 1011× 11 + 81

1011 = 81× 12 + 39

81 = 39× 2 + 3

39 = 3× 13.
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Now, runing the Euclidean Algorithm in reverse, we arrive at:

3 = 81− 39× 2

= 81− (1011− 81× 12)× 2 = 81× 25− 1011× 2

= (11202− 1011× 11)× 25− 1011× 2 = 11202× 25− 1011× 277.

Furthermore, Bezout’s identity holds for any number of variables.

Theorem 1.2.2 (General Bezout’s Identity). For integers a1, a2, · · · , an, there
exists integers x1, x2, · · · , xn such that

a1x1 + a2x2 + · · ·+ anxn =
n∑
i=1

aixi = gcd(a1, a2, · · · , an).

Proof. Again, two methods can be used (either the Extremal Method or using
induction). We show the induction proof for moving from 2 to 3 variables and
challenge the reader to attempt using both methods to prove the general case.
For 3 variables, we use 2 variable Bezout’s twice:

gcd(a1, a2, a3) = gcd (a1, gcd(a2, a3))

= a1x1 + c gcd(a2, a3)

= a1x1 + c (x2a2 + x3a3) = a1x1 + a2 (cx2) + a3 (cx3)

.

Theorem 1.2.3 (Euclid’s Lemma). If a | bc and gcd(a, b) = 1, prove that
a | c.

Proof. By Bezout’s identity, gcd(a, b) = 1 implies that there exist x, y such that

ax+ by = 1.

Next, multiply this equation by c to arrive at

c(ax) + c(by) = c.

Finally, since a | ac and a | bc, we have a | ac(x) + bc(y) = c.
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Bezout’s identity for polynomials works the same exact way as it does for
integers. Assume f(x), g(x) ∈ Z[x], then using Euclid’s Algorithm, we can find
u(x), v(x) ∈ Q[x] such that

f(x)u(x) + g(x)v(x) = gcd(f(x), g(x)).

Here is an example for clarity.

Example 1.2.4. Find polynomials u, v ∈ Q[x] such that

(x4 − 1)u(x) + (x7 − 1)v(x) = (x− 1).

Solution. First off, we use Euclid’s Algorithm on x4 − 1, x7 − 1. Notice that

x7 − 1 = (x4 − 1)x3 + x3 − 1

x4 − 1 = x(x3 − 1) + x− 1

x3 − 1 = (x− 1)(x2 + x+ 1).

Therefore,

x− 1 = x4 − 1− x(x3 − 1)

= x4 − 1− x
[
x7 − 1−

(
x4 − 1

)
x3
]

=
(
x4 − 1

)
+ x4

(
x4 − 1

)
− x

(
x7 − 1

)
=

(
x4 − 1

) (
x4 + 1

)
− x

(
x7 − 1

)
.

Therefore u(x) = x4 + 1, v(x) = −x.

The following example illustrates how to approach problems when the numbers
are not as nice as above.

Example 1.2.5. Find u, v ∈ Q[x] such that (2x2−1)u(x)+(3x3−1)v(x) = 1.

Solution. By the division algorithm, note that

3x3 − 1 =
(
2x2 − 1

)(3

2
x

)
+

(
3

2
x− 1

)
.

Now, for the second step of the Euclidean Algorithm, we have to divide 2x2 − 1

by 3
2
x−1. We start by dividing the leading terms:

2x2

3
2
x

=
4

3
x. Therefore, we have

2x2 − 1 =

(
3

2
x− 1

)(
4

3
x

)
+

(
4

3
x− 1

)
.
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Next, we divide the leading term of r1(x), 4
3
x, by the leading term of the dividend,

3
2
x:

4
3
x

3
2
x

=
8

9
. We add this to the quotient and get

2x2 − 1 =

(
3

2
x− 1

)(
4

3
x+

8

9

)
− 1

9
.

Running these steps in reverse, we see that

−1

9
=

(
2x2 − 1

)
−
(

4

3
x+

8

9

)(
3

2
x− 1

)
=

(
2x2 − 1

)
−
(

4

3
x+

8

9

)[(
3x3 − 1

)
−
(
2x2 − 1

)(3

2
x

)]
=

(
2x2 − 1

) [
1−

(
4

3
x+

8

9

)(
−3

2
x

)]
+
(
3x3 − 1

) [
−
(

4

3
x+

8

9

)]
=

(
2x2 − 1

)(
2x2 +

4

3
x+ 1

)
+
(
3x3 − 1

) [
−
(

4

3
x+

8

9

)]
.

Finally, we have to multiply both sides by −9 in order to give 1 on the left hand
side:

1 = (2x2 − 1)(−18x2 − 12x− 9) + (3x3 − 1)(12x+ 8).

Therefore u(x) = −18x2 − 12x− 9 and v(x) = 12x+ 8 .

Example 1.2.6. Suppose you have a 5 litre jug and a 7 litre jug. We can
perform any of the following moves:

• Fill a jug completely with water.

• Transfer water from one jug to another, stopping if the other jug is filled.

• Empty a jug of water.

The goal is to end up with one jug having exactly 1 litre of water. How do we
do this?

Solution. Note that at every stage, the jugs will contain a linear combination of 5
and 7 litres of water. We find that 1 = 5× 3 + 7× (−2), therefore, we want to fill
the jug with 5 litres 3 times, and empty the one with 7 litres twice. In order to
keep track of how much water we have in each step, we use an ordered pair (a, b),
where a is the amount in the 5 litre jug and b is the amount in the 7 litre jug:

(0, 0)→ (5, 0)→ (0, 5)→ (5, 5)→ (3, 7)→ (3, 0)→ (0, 3)→ (5, 3)→ (1, 7).
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Example 1.2.7. Use Bezout’s identity to prove the theorem in Section 1.1,

gcd(am − 1, an − 1) = agcd(m,n) − 1.

Proof. Let d = gcd(am − 1, an − 1). Therefore, am ≡ 1 (mod d) and an ≡ 1
(mod d). By Bezout’s identity, let gcd(m,n) = mx + ny. Using the above two
relations, we also have

agcd(m,n) ≡ amx+ny ≡ amxany ≡ 1 (mod d).

Therefore, d | agcd(m,n) − 1. We now show that agcd(m,n) − 1 | d.
Since gcd(m,n) | m, we have

agcd(m,n) − 1 | am − 1.

We can similarly show that agcd(m,n) − 1 | an − 1. Since agcd(m,n) − 1 divides both
am − 1 and an − 1, it must also divide their greatest common divisor:

agcd(m,n) − 1 | gcd(am − 1, an − 1) = d.

Since d | agcd(m,n)−1 and agcd(m,n)−1 | d, we must have d = gcd(am−1, an−1) =
agcd(m,n) − 1.

Example 1.2.8. (Putnam 2000) Prove that the expression

gcd(m,n)

n

(
n

m

)
is an integer for all pairs of integers n ≥ m ≥ 1.

Solution. By Bezout’s identity, there exist integers a and b such gcd(m,n) =
am+ bn. Next, notice that

gcd(m,n)

n

(
n

m

)
=
am+ bn

n

(
n

m

)
=
am

n

(
n

m

)
+ b

(
n

m

)
.

We must now prove that
am

n

(
n

m

)
is an integer. Note that

m

n

(
n

m

)
=
m

n

(
n!

m!(n−m)!

)
=

(n− 1)!

(m− 1)!(n−m)!
=

(
n− 1

m− 1

)
.

Therefore,
gcd(m,n)

n

(
m

n

)
= a

(
m− 1

n− 1

)
+ b

(
m

n

)
,

which is clearly an integer.
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1.3 Fundamental Theorem of Arithmetic

Next, we use Bezout’s Identity to prove the Fundamental Theorem of Arithmetic,
which, as the name suggests, is incredibly fundamental to mathematics.

Theorem 1.3.1. (Fundamental Theorem of Arithmetic) Every integer n ≥ 2
has a unique prime factorization.

Proof. We divide this problem into two parts. The first part is showing that
every integer n ≥ 2 has a prime factorization. To do this, we use strong induction
on n. To establish the base case, note that n = 2, 3, 4 all have a unique prime
factorization. For the inductive hypothesis, assume that every integer n < k has
a prime factorization, and we show that n = k then has a prime factorization.

If k is prime, then it has a prime factorization (itself). On the other hand, if k

is composite, then let p be a prime divisor of k. We can now write k = p

(
k

p

)
. We

know that
k

p
can be written as the product of primes by the inductive hypothesis

(
k

p
< k), therefore k = p

(
k
p

)
similarly can be.

The second part of the problem is to prove uniqueness, for which we again
use induction. The base cases of n = 2, 3, 4 all have unique prime factorizations.
Assume that every integer n < k has a unique prime factorization, and we prove
that n = k then must have a unique prime factorization. For the sake of contra-
diction, let k have two distinct prime factorizations, where repeated primes are
allowed in the products:

n = p1p2p3 · · · pi = q1q2q3 · · · qj.

Note that we must have p1 | q1q2q3 · · · qj. By Euclid’s Lemma (from Section 1.1),
we know that we must have p1 | qm for some integer m with 1 ≤ m ≤ j. Therefore
p1 = qm since they are primes. Now, we can cancel this from both sides of the
expression in order to get

n

p1
=

n

qm
= p2p3 · · · pi = q1q2 · · · qm−1qm+1 · · · qj.

By the inductive hypothesis,
n

pi
=

n

qm
has a unique prime factorization, therefore

the two products above contain the same exact primes with the same multiplicity
(although they may be slightly rearranged). Similarly, since p1 = qm, the two
initial products are exactly identical, and n has a unique prime factorization.



Justin Stevens 23

Theorem 1.3.2. Let the prime factorizations of two integers a, b be

a = pe11 p
e2
2 · · · p

ek
k

b = pf11 p
f2
2 · · · p

fk
k .

The exponents above can be zero and the pi’s are distinct. Then,

gcd(a, b) = p
min(e1,f1)
1 p

min(e2,f2)
2 · · · pmin(ek,fk)

k

and lcm[a, b] = p
max(e1,f1)
1 p

max(e2,f2)
2 · · · pmax(ek,fk)

k .

Corollary 1.3.1. For a, b ∈ Z+, gcd(a, b) lcm[a, b] = ab.

We now present several problems involving prime factorization, beginning with
some more computational problems, and ending with some challenging olympiad
problems.

Example 1.3.1. (Classic) The cells in a jail are numbered from 1 to 100
and their doors are activated from a central button. The activation opens a
closed door and closes an open door. Starting with all the doors closed the
button is pressed 100 times. When it is pressed the k-th time the doors that
are multiples of k are activated. Which doors will be open at the end?

Solution. In order for a door to be open at the end, it will have to have been
activated an odd number of times (since it initially was closed). For a given door
d, it will be activated only when the button is pressed the k-th time if and only if
k is a divisor of d. Therefore, we desire to find numbers that have an odd number
of divisors.

Using the prime factorization of a in the theorem above, we calculate the
number of prime divisors a has. In order to do this, we construct an arbitrary
divisor of a. For each prime pi in the prime factorization of a, we have ei + 1
choices for the exponent. Therefore, we can see that the number of divisors of a
is simply

τ(a) =
k∏
i=1

(ei + 1) .

For this number to be odd, each exponent ei must be even, implying that a
must be a perfect square. Therefore, the doors which are open at the end are
simply the doors that are perfect squares, namely 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.
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Example 1.3.2 (AIME 1998). For how many values of k is 1212 the least
common multiple of 66, 88, and k?

Solution. We find the prime factorizations of these numbers. We have 1212 =
224 ·312, 66 = 26 ·36 and 88 = 224. Let k = 2k13k2 . Since lcm[26 ·36, 224, k] = 224 ·312,
we must have k2 = 12. On the other hand, since the second term above has 24
2’s, there are no limitations on k1 other than 0 ≤ k1 ≤ 24, giving 25 possibilities.
Therefore, there are 25 · 1 = 25 possible values of k.

Example 1.3.3 (AIME 1987). Let [r, s] denote the least common multiple of
positive integers r and s. Find the number of ordered triples a, b, c such that
[a, b] = 1000, [b, c] = 2000, [c, a] = 2000.

Solution. Notice that 1000 = 23 × 53, 2000 = 24 × 53. Since we are working with
least common multiples, set

a = 2a15a2 , b = 2b15b2 , c = 2c15c2 .

If a1 or b1 were at least 4, then 24 would divide [a, b], therefore, this is impossible.
On the other hand, [b, c] and [c, a] both are multiples of 24, therefore, we have
c1 = 4. Amongst a1 and b1, at least one of them must be 3 in order to have
23 | [a, b]. Therefore, we have the pairs

(a1, b1, c1) = (0, 3, 4), (1, 3, 4), (2, 3, 4), (3, 3, 4), (3, 2, 4), (3, 1, 4), (3, 0, 4).

for 7 in total.
Now, for the power of 5, in order to have all three of the least common multiples

above be divisible by 53, at least two of the set a2, b2, c2 must be 3. This gives us
a total of 4 cases, when all of the numbers are 3 or when two of them are, and
the third is less than 3:

(a2, b2, c2) = (3, 3, 3), (3, 3, x), (3, x, 3), (x, 3, 3).

We know that 0 ≤ x < 3, therefore, there are 3 possibilities for each of the x’s
above. Therefore, there are a total of 3 × 3 + 1 = 10 possibilities for the powers
of 5.

In conclusion, there is a total of 7 × 10 = 70 ordered triples a, b, c which
work.
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Example 1.3.4 (Canada 1970). Given the polynomial

f(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an

with integer coefficients a1, a2, . . . , an, and given also that there exist four
distinct integers a, b, c and d such that

f(a) = f(b) = f(c) = f(d) = 5,

show that there is no integer k such that f(k) = 8.

Solution. Set g(x) = f(x)− 5. Since a, b, c, d are all roots of g(x), we must have

g(x) = (x− a) (x− b) (x− c) (x− d)h(x)

for some h(x) ∈ Z[x]. Let k be an integer such that f(k) = 8, giving g(k) =
f(k)− 5 = 3. Using the factorization above, we find that

3 = (k − a) (k − b) (k − c) (k − d)h(x).

By the Fundamental Theorem of Arithmetic, we can only express 3 as the product
of at most three distinct integers (−3, 1,−1). Since k − a, k − b, k − c, k − d
are all distinct integers, we have too many terms in the product, leading to a
contradiction.

Example 1.3.5. Let a, b, c be positive integers. If gcd(a, b, c)lcm[a, b, c] = abc,
prove that gcd(a, b) = gcd(b, c) = gcd(c, a) = 1.

Solution. Consider a prime p that divides into at least one of a, b, c. I will show
that it can divide into only one of the set a, b, c, hence, proving that a, b, c are
pairwise relatively prime. We use the notation pk || a to denote pk fully dividing
a, meaning that pk | a, however, pk+1 - a. Another form of this notation that will
be seen later is vp(a) = k.

For integers a1, b1, c1, let pa1 || a, pb1 || b, pc1 || c. By the definition of greatest
common divisor, pmin(a1,b1,c1) || gcd(a, b, c). Similarly, by the definition of least
common multiple, pmax(a1,b1,c1) || lcm[a, b, c]. We assume WLOG that a1 ≥ b1 ≥ c1;
hence min(a1, b1, c1) = c1 and max(a1, b1, c1) = a1.

Therefore, the power of p which divides into gcd(a, b, c)lcm[a, b, c] is max(a1, b1, c1)+
min(a1, b1, c1) = a1 + c1. Therefore,

pa1+c1 || gcd(a, b, c)lcm[a, b, c].
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Note that, on the other hand,

pa1+b1+c1 || abc.

In order for this to be true, we must then have

a1 + c1 = a1 + b1 + c1 =⇒ b1 = 0.

By the WLOG assumption above, we had a1 ≥ b1 ≥ c1. Since b1 = 0, we must
then have c1 = 0. Therefore, p can only divide one of the set a, b, c. The same
argument holds for any prime p that divides into the set {a, b, c}, therefore, a, b, c
are pairwise relatively prime.

Example 1.3.6 (USAMO 1973). Show that the cube roots of three distinct
prime numbers cannot be three terms (not necessarily consecutive) of an arith-
metic progression.

Solution. Assume for the sake of contradiction that three such distinct primes
exist, and let these primes be 3

√
p1, 3
√
p2, 3
√
p3. By definition of an arithmetic

sequence, set

3
√
p1 = a, 3

√
p2 = a+ kd, 3

√
p3 = a+md,m > k.

Subtracting gives:

3
√
p2 − 3

√
p1 = kd

3
√
p3 − 3

√
p1 = md.

Multiply the first equation by m and the second by k in order to equate the two

m 3
√
p2 −m 3

√
p1 = k 3

√
p3 − k 3

√
p1 = mkd.

Rearraging this equation, we get

m 3
√
p2 − k 3

√
p3 = (m− k) 3

√
p1. (1.1)

Now, cubing this gives Using this equation and some rearrangement, we get:

m3p2 − 3
(
m2p

2
3
2

)(
kp

1
3
3

)
+ 3

(
mp

1
3
2

)(
k2p

2
3
3

)
− k3p3 = (m− k)3 p1.

Moving the integer terms over to the RHS and factoring out 3
(
mp

1
3
2

)(
kp

1
3
3

)
from

the LHS gives[
3
(
mp

1
3
2

)(
kp

1
3
3

)](
kp

1
3
3 −mp

1
3
2

)
= (m− k)3 p1 −m3p2 + k3p3.
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From Equation 1.1, we know that kp
1
3
3 −mp

1
3
2 = (k −m) 3

√
p1. Therefore, substi-

tuting this into the above equation gives

3
(
mp

1
3
2

)(
kp

1
3
3

)(
(k −m) 3

√
p1

)
= (m− k)3 p1 −m3p2 + k3p3.

Leaving only the cube roots on the left hand side gives

3
√
p1p2p3 =

(m− k)3 p1 −m3p2 + k3p3
3mk(k −m)

. (1.2)

Lemma. If 3
√
a is rational, then 3

√
a is an integer.

Proof. Set 3
√
a =

x

y
where the fraction is in lowest terms, therefore gcd(x, y) = 1.

We desire to show that we must have the denominator, y, equal to 1. Cubing this
equation and rearranging gives ay3 = x3. Assume for the sake of contradiction
that y has a prime divisor, say p. If p | y then we must also have p | x from
ay3 = x3. However, this contradicts gcd(x, y) = 1. Therefore, it is impossible for
y to have any prime divisors, and we must have y = 1, implying that 3

√
a is an

integer.

Since the RHS of Equation 1.2 is a rational number, the Lemma above implies
that 3

√
p1p2p3 must be an integer. From the Fundamental Theorem of Arithmetic,

this means that we must have p1 = p2 = p3, contradiction.

1.4 Challenging Division Problems

In this section, I will show some of my favorite problems involving divisibility
and concepts from this chapter. I highly recommend attempting these problems
before reading the provided solutions.

These first few examples illustrate how to use inequalities and fractions with
divisibility.

Example 1.4.1 (St. Petersburg 1996). Find all positive integers n such that

3n−1 + 5n−1 | 3n + 5n.

Solution. Notice that 3n−1 + 5n−1 also divides 5 times itself:

3n−1 + 5n−1 | 5
(
3n−1 + 5n−1

)
= 3n + 2 · 3n−1 + 5n.
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Subtracting the given equation from this gives us

3n−1 + 5n−1 |
(
3n + 2 · 3n−1 + 5n

)
− (3n + 5n)

=⇒ 3n−1 + 5n−1 | 2 · 3n−1.

However, for n > 1, we have 3n−1+5n−1 > 2·3n−1, leading to the above divisibility
being impossible. We then check that n = 1 is the only possible solution.

Example 1.4.2 (APMO 2002). Find all pairs of positive integers a, b such
that

a2 + b

b2 − a
and

b2 + a

a2 − b
are both integers.

Solution. For these conditions to be met, we must have

a2 + b ≥ b2 − a b2 + a ≥ a2 − b
(a+ b) (a− b+ 1) ≥ 0 (a+ b) (b− a+ 1) ≥ 0

a ≥ b− 1 b ≥ a− 1.

For these two inequalities to be satisfied, we must have a = b, b− 1, b+ 1. Notice
that the cases a = b − 1 and a = b + 1 are identical because we can simply flip
the pair after we finish. Therefore, we consider the below two cases.

Case 1: a = b.

The expression
a2 + a

a2 − a
must then be an integer. Simplifying this expression

shows that
a2 + a

a2 − a
=
a+ 1

a− 1
= 1 +

2

a− 1
.

Therefore, a−1 must be a divisor of 2, giving a = 2, 3. This results in the solution
pairs (a, b) = (2, 2), (3, 3).

Case 2: a = b− 1.
Note that

a2 + b = (b− 1)2 + b = b2 − b+ 1 = b2 − a.

Therefore,
a2 + b

b2 − a
= 1. The only expression which we then have to check whether

it is an integer is
b2 + a

a2 − b
. Expanding and simplifying shows:

b2 + a

a2 − b
=

b2 + b− 1

(b− 1)2 − b
=

b2 + b− 1

b2 − 3b+ 1

= 1 +
4b− 2

b2 − 3b+ 1
.
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For b ≥ 7, however, we then have b2 − 3b + 1 > 4b − 2, meaning that the above
expression cannot be an integer. We therefore test b ∈ {1, 2, 3, 4, 5, 6} to see when

4b−2
b2−3b+1

is an integer, and find that b = 1, 2, 3 all work. However, when b = 1, this
gives a non-positive value for a, therefore, we discard this solution. Therefore, the
two solution pairs we find are (a, b) = (1, 2), (2, 3).

The a = b + 1 case gives the permutations of the two above solutions, for a
complete solution set of (a, b) = (2, 2), (3, 3), (1, 2), (2, 3), (2, 1), (3, 2).

Example 1.4.3. (1998 IMO) Determine all pairs (x, y) of positive integers
such that x2y + x+ y is divisible by xy2 + y + 7.

Solution. We desire to simplify the above expression by cancelling some terms.
If we multiply the divisor xy2 + y + 7 by x and subtract this from y times the
dividend, then the x2y2 and xy terms will cancel in the subtraction:

xy2 + y + 7 | y
(
x2y + x+ y

)
− x

(
xy2 + y + 7

)
= y2 − 7x.

If y2 − 7x > 0, then in order to have the above divisibility, we must have
xy2 + y + 7 ≤ y2 − 7x. However, for positive integers x, y, the LHS of the
inequality is a lot larger, leading to this being impossible.

If y2 − 7x = 0, then we have the solution pair (x, y) = (7m2, 7m) for positive
integer m.

Finally, if y2 − 7x < 0, then 7x− y2 > 0. For a positive integer d, let

7x− y2

xy2 + y + 7
= d =⇒ 7x− y2 = d(xy2 + y + 7).

Expanding and isolating all the terms involving x to the LHS of the equation,
we find that

x(7− dy2) = y2 + dy + 7d.

Now, notice that the RHS must be positive since y and d are both positive
integers. Therefore, similarly, the LHS must also be positive. However, for y ≥ 3,
we have 7− dy2 < 0, therefore, we test y = 1, 2.

If y = 1, then we have

x(7− d) = 8d+ 1

=⇒ x =
8d+ 1

7− d
= −8 +

57

7− d
.

The divisors of 57 are 1, 3, 19, 57. We want both x and d to be positive integers,
therefore, we have 7 − d = 1, 3. In the first case, we have x = −8 + 57

1
= 49. In
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the second case, we have x = −8 + 57
3

= 11. Therefore, we arrive at the solutions
(x, y) = (11, 1), (49, 1).

If y = 2, then we have
x(7− 4d) = 9d+ 4.

However, since the LHS must be positive, we are forced to have d = 1, giving

x =
9 · 1 + 4

7− 4 · 1
=

13

3
, which is not an integer.

The solutions are hence (x, y) = (11, 1), (49, 1), (7m2, 7m) .

Example 1.4.4. (1992 IMO) Find all integers a, b, c with 1 < a < b < c such
that

(a− 1)(b− 1)(c− 1)

divides abc− 1.

Solution. In order to simplify the above expression, we set a = x+1, b = y+1, c =
y + 1. We then arrive at

xyz | (x+ 1) (y + 1) (z + 1)− 1.

Expanding and simplifying give

xyz | (xyz + xy + xz + yz + x+ y + z + 1)− 1

xyz | xy + xz + yz + x+ y + z.

Finally, dividing the two expressions, we see that we must have

1

x
+

1

y
+

1

z
+

1

xy
+

1

xz
+

1

yz
∈ Z.

From 1 < a < b < c, we get 1 ≤ x < y < z. The maximum possible value of
this sum is when x = 1, y = 2, z = 3:

S =
1

x
+

1

y
+

1

z
+

1

xy
+

1

xz
+

1

yz
≤ 1

1
+

1

2
+

1

3
+

1

1× 2
+

1

1× 3
+

1

2× 3
= 2

5

6
.

Therefore, S ∈ {1, 2}. Furthermore, if we have x, y, z ≥ 3, then the maximum
possible value of S would be when (x, y, z) = (3, 4, 5), giving S = 59

60
≤ 1. There-

fore, it is impossible for S to be an integer since it is less than 1. Since x is the
smallest, we must have x ∈ {1, 2}. We have now greatly limited the possibilities
for S and x, and we can do casework in order to find the corresponding values of
y and z.
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Case 1: If x = 1, then we get

1

1
+

1

y
+

1

z
+

1

y
+

1

z
+

1

yz
= 1 or 2.

In the case that S = 1, note that the LHS is greater than 1, therefore this is
impossible. When S = 2, multiplying by yz and simplifying gives

2y + 2z + 1 = yz =⇒ (y − 2)(z − 2) = 5 =⇒ (y, z) = (3, 7)

In conclusion, we have the solution (x, y, z) = (1, 3, 7).
Case 2: If x = 2, then we get

1

2
+

1

y
+

1

z
+

1

2y
+

1

2z
+

1

yz
= 1 or 2.

When S = 1, multiplying by 2yz and simplifying gives

3y + 3z + 2 = yz =⇒ (y − 3)(z − 3) = 11 =⇒ (y, z) = (4, 14).

When S = 2, multiplying by 2yz and simplifying gives

3y + 3z + 2 = 3yz.

However, since 2 is not a multiple of 3, this is impossible. In conclusion, we
have the solution (x, y, z) = (2, 4, 14).

In summary of the cases above, we found two solutions:

(x, y, z) = (2, 4, 14), (1, 3, 7) =⇒ (a, b, c) = (3, 5, 15), (2, 4, 8).

We conclude this chapter with a few interesting problems involving prime
numbers and divisibility.

Example 1.4.5 (Iran 2005). Let n, p > 1 be positive integers and p be prime.
Given that n | p− 1 and p | n3 − 1, prove that 4p− 3 is a perfect square.

Solution. Since n | p − 1, let p − 1 = kn for some positive integer k, therefore
p = kn+ 1. This satisfies the first condition of the requirement. We now look at
the second condition, which is p | n3 − 1 = (n − 1)(n2 + n + 1). Note that since
p = kn+ 1, we have p ≥ n− 1, and because p is a prime, gcd(p, n− 1) = 1:

p | (n− 1)(n2 + n+ 1) =⇒ p = kn+ 1 | n2 + n+ 1.
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In order for this to be true, kn + 1 ≤ n2 + n + 1 =⇒ k ≤ n + 1. Since
n2 + n+ 1 | k(n2 + n+ 1), we also have

p = kn+ 1 | kn2 + kn+ k

=⇒ kn+ 1 | kn2 + kn+ k − n(kn+ 1) = kn+ k − n.

Similarly, to have this divisibility, kn+ k− n ≥ kn+ 1 =⇒ k ≥ n+ 1. However,
above we found that k ≤ n + 1, therefore, k = n + 1. Substituting this in for p
gives p = (n+ 1)n+ 1 = n2 + n+ 1, giving

4p− 3 = 4n2 + 4n+ 4− 3 = 4n2 + 4n+ 1 = (2n+ 1)2.

Example 1.4.6 (David M. Bloom). Let p be a prime with p > 5, and let
S = {p−n2|n ∈ N, n2 < p}. Prove that S contains two elements a and b such
that a|b and 1 < a < b.

Solution. We try a few examples. For p = 23, S = {23− 12, 23− 22, 23− 32, 23−
42} = {22, 19, 14, 7} and 7 | 14. For p = 19, S = {18, 15, 10, 3} and 3 | 18. For
p = 29, S = {28, 25, 20, 13, 4} and 4 | 20. It appears as if the smallest element of
S always divides another element.

Let k be so that k2 < p < (k + 1)2. Therefore, p − k2 is the smallest element
in S.

If p − k2 = 1, note that since p > 5, it must be an odd prime, therefore, k is
even. Then, set a = p − (k − 1)2 = 2k and b = p − 12 = k2. Since k is even, we
have a = 2k | b = k2.

In the case that p − k2 6= 1, then let a = p − k2. Note that since k2 ≡ p
(mod a), we also have (k − a)2 ≡ (a− k)2 ≡ p (mod a). Therefore,

a | p− (k − a)2 and a | p− (a− k)2.

It is now left to show that p− (k− a)2 or p− (a− k)2 ∈ S, depending on the sign
of k − a.

If k > a, then let n = k − a ∈ N. Furthermore, since k2 < p, we also have
n2 = (k − a)2 < k2 < p, therefore b = p− (k − a)2 ∈ S and we have a | b.

If k = a, then we would have k = p−k2 =⇒ p = k(k+1), which is impossible
for prime p > 5.

Finally, if k < a, then let n = a− k ∈ N. Furthermore, we have

a = p− k2 < (k + 1)2 − k2 = 2k + 1 =⇒ a ≤ 2k.



Justin Stevens 33

However, if a = 2k, then we would have a = p−k2 =⇒ p = k2+2k = k(k+2),
which is impossible for prime p > 5. Therefore, a < 2k and we have a − k < k.
Since k2 < p, we also have n2 = (a− k)2 < k2 < p, therefore, b = p− (a− k)2 ∈ S
and a | b.

Example 1.4.7. (Iran 1998) Suppose that a and b are natural numbers such
that

p =
b

4

√
2a− b
2a+ b

is a prime number. Find all possible values of a, b, p.

Solution. If b is odd then 2a−b is odd so henceforth b
4

√
2a−b
2a+b

cannot be an integer.

We consider two cases: b = 4k, or b = 2m where m is odd.
Case 1: b = 4k.

p = k

√
2a− 4k

2a+ 4k
= k

√
a− 2k

a+ 2k(p
k

)2
=

a− 2k

a+ 2k

p2a+ 2p2k = k2a− 2k3

a(k2 − p2) = 2k(k2 + p2)

a =
2k(k2 + p2)

k2 − p2
.

We know that a must be an integer. Consider the cases p | k and p - k. The
first case gives us k = dp for some positive integer d. Substituting this into the
above equation gives

a =
2dp(d2p2 + p2)

d2p2 − p2
=

2dp(d2 + 1)

d2 − 1
.

We have gcd(d, d2 − 1) = 1 therefore we must have

2p(d2 + 1)

d2 − 1
= 2p

(
1 +

2

d2 − 1

)
∈ Z

=⇒ 4p

d2 − 1
∈ Z.

When d is even we must have (d2 − 1) | p =⇒ p = d2 − 1 = (d − 1)(d + 1)
since p is a prime. The only way for this to be possible is when d− 1 = 1, which
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gives the solution (p, d) = (3, 2). Substituting this into the formulas above gives
(a, b, p) = (20, 24, 3).

When d is odd, we find that (p, d) = (2, 3). Substituting this into the formulas
above gives (a, b, p) = (15, 24, 2).

Now when p - k, a =
2k(k2 + p2)

k2 − p2
must again be an integer. From the Eu-

clidean Algorithm, gcd(k, k2 − p2) = gcd(k, p2) = 1, therefore

gcd(2k(k2 + p2), k2 − p2) = gcd(2k2 + 2p2, k2 − p2)
= gcd(2k2 + 2p2 − 2(k2 − p2), k2 − p2)
= gcd(4p2, k2 − p2).

By similar logic to above, gcd(p2, k2 − p2) = gcd(p2, k2) = 1, therefore we can
further simplify:

gcd(4p2, k2 − p2) = gcd(4, k2 − p2).
Since k2 − p2 is the denominator of the fraction, we desire for the above ex-

pression to be equal to k2−p2. However, this gives


k2 − p2 = 1

k2 − p2 = 2

k2 − p2 = 4

of which none

gives any positive solution for p.
In conclusion, we have found that (a, b, p) = (20, 24, 3), (15, 24, 2).
Case 2: b = 2m where m is odd.

p =
m

2

√
2a− 2m

2a+ 2m
.

Using similar algebraic manipulation as before, we find that this is equivalent
to

a =
m(m2 + 4p2)

m2 − 4p2
.

We again have two cases to consider: p | m and p - m. The first case p | m.
Let m = dp for some integer d. We arrive at

a =
pd(p2d2 + 4p2)

p2(d2 − 4)
=
pd(d2 + 4)

d2 − 4
.

Remembering that since m is odd, d must also be odd, we have gcd(d, d2 − 4) =
gcd(d, 4) = 1 and gcd(d2 + 4, d2 − 4) = gcd(8, d2 − 4) = 1. Therefore, in order for

a to be an integer,
p

d2 − 4
must be an integer. Since the only divisors of a prime

are 1 and itself,
d2 − 4 = (d− 2)(d+ 2) = p.
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This is only possible when d = 3 which gives p = 5. Substituting these values into
the above expressions gives the solution triple (a, b, p) = (39, 30, 5).

On the other hand, when p - m, gcd(m,m2 − 4p2) = gcd(m, 4p2) = 1 since m
is odd. Therefore, since a must be an integer, we have

m2 + 4p2

m2 − 4p2
= 1 +

8p2

m2 − 4p2
∈ Z.

Furthermore, we also have gcd(m2 − 4p2, 8p2) = 1 since m is odd, therefore we

must have m2 − 4p2 | 8. This gives the cases:


m2 − 4p2 = 1

m2 − 4p2 = 2

m2 − 4p2 = 4

m2 − 4p2 = 8.

which yields no

valid integer solutions.
In conclusion, the three solutions are (a, b, p) = (39, 30, 5), (20, 24, 3), (15, 24, 2).

1.5 Problems

1.1. Calculate gcd(301, 603).

1.2. Calculate gcd(153, 289).

1.3. Calculate gcd(133, 189).

1.4. The product of the greatest common factor and least common multiple of
two positive numbers is 384. If one number is 8 more than the other number,
compute the sum of two numbers.

1.5. Use long division on a(x) = x5 + 4x4 + 2x and b(x) = x3 + 2x2 in order to
calculate q(x) and r(x).

1.6. [AHSME 1990] For how many integers N between 1 and 1990 is the improper
fraction N2+7

N+4
not in lowest terms?

1.7. [IMO 1959] Prove that for natural n the fraction 21n+4
14n+3

is irreducible.

1.8. Use the Euclidean Algorithm for polynomials to calculate gcd(x4−x3, x3−x).

1.9. [AHSME 1988] If a and b are integers such that x2 − x − 1 is a factor of
ax3 + bx2 + 1, then what are the values of a and b?
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1.10. Prove that any two consecutive terms in the Fibonacci sequence are rela-
tively prime.

1.11. Prove that the sum and product of two positive relatively prime integers
are themselves relatively prime.

1.12. Find integers x, y such that 5x+ 97y = 1.

1.13. Find integers x, y such that 1110x+ 1011y = 3.

1.14. Prove that there are no integers x, y such that 1691x+ 1349y = 1.

1.15. Find all integers x, y such that 5x+ 13y = 1.

1.16. Let n ≥ 2 and k be positive integers. Prove that (n− 1)2 | (nk − 1) if and
only if (n− 1) | k.

1.17. Prove that
√

2 is irrational.

1.18. Prove that log10(2) is irrational.

1.19. [AIME 2008] How many positive integer divisors of 20042004 are divisible
by exactly 2004 positive integers?

1.20. Find polynomials u, v ∈ Q[x] such that

(5x2 − 1)u(x) + (x3 − 1)v(x) = 1.

1.21. Find u, v ∈ Z[x] such that (x8 − 1)u(x) + (x5 − 1)v(x) = (x− 1).

1.22. For relatively prime naturals m,n, do there exist polynomials u, v ∈ Q[x]
such that (xm − 1)u(x) + (xn − 1)v(x) = (x− 1)?

1.23. For positive integers a, b, n > 1, prove that

an − bn - an + bn

1.24. [HMMT] Compute gcd(2002 + 2, 20022 + 2, 20023 + 2, · · · ).

1.25. Let n be a positive integer. Calculuate

gcd (n! + 1, (n+ 1)!) .

Note: This problem requires Wilson’s theorem.

1.26. [PUMAC 2013] The greatest common divisor of 23010 − 2 and 23045 − 2 can
be expressed in the form 2x − 2. Calculuate x.
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1.27. [Poland 2004] Find all natural n > 1 for which value of the sum 22 + 32 +
· · ·+ n2 equals pk where p is prime and k is natural.

1.28. Prove that if m 6= n, then

gcd(a2
m

+ 1, a2
n

+ 1) =

{
1 if a is even

2 if a is odd
.

1.29. Prove that for positive integers a, b > 2 we cannot have 2b − 1 | 2a + 1.

1.30. [USAMO 2007] Prove that for every nonnegative integer n, the number
77n + 1 is the product of at least 2n+ 3 (not necessarily distinct) primes.
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Modular Arithmetic

2.1 Inverses

Definition 2.1.1. We say that the inverse of a number a modulo m when a and
m are relatively prime is the number b such that ab ≡ 1 (mod m).

Example. The inverse of 3 mod 4 is 3 because 3 ·3 = 9 ≡ 1 (mod 4). The inverse
of 3 mod 5 is 2 because 3 · 2 = 6 ≡ 1 (mod 5).

The following theorem is incredibly important and helps us to prove Euler’s
Totient Theorem and the existence of an inverse. Make sure that you understand
the proof and theorem as we will be using it down the road.

Theorem 2.1.1. Let a and m be relatively prime positive integers. Let
the set of positive integers relatively prime to m and less than m be R =
{a1, a2, · · · , aφ(m)}. Prove that S = {aa1, aa2, aa3, · · · , aaφ(m)} is the same as
R when reduced mod m.

Proof. Notice that every element of S is relatively prime to m. Also R and S
have the same number of elements. Because of this, if we can prove that no two
elements of S are congruent mod m we would be done. However

aax ≡ aay (mod m) =⇒ a(ax − ay) ≡ 0 (mod m) =⇒ ax ≡ ay (mod m)

which happens only when x = y therefore the elements of S are distinct mod m
and we are done.

Theorem 2.1.2. When gcd(a,m) = 1, a always has a distinct inverse mod

38
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m.

Proof. We notice that 1 ∈ R where we define R = {a1, a2, · · · , aφ(m)} to be the
same as above. This must be the same modm as an element in {aa1, aa2, · · · , aaφ(m)}
by Theorem 1 henceforth there exists some ax such that aax ≡ 1 (mod m).

Corollary 2.1.1. The equation ax ≡ b (mod m) always has a solution when
gcd(a,m) = 1.

Proof. Set x ≡ a−1b (mod m).

Example. Find the inverse of 9 mod 82.

Solution. Notice that 9 · 9 ≡ −1 (mod 82) therefore 9 · (−9) ≡ 1 (mod 82). The
inverse of 9 mod 82 is hence 82− 9 = 73.

Example 2.1.1. Let m and n be positive integers posessing the following
property: the equation

gcd(11k − 1,m) = gcd(11k − 1, n)

holds for all positive integers k. Prove that m = 11rn for some integer r.

Solution. Define vp (a) to be the number of times that the prime p occurs in the
prime factorization of a 1. The given statement is equivalent to proving that
vp (m) = vp (n) when p 6= 11 is a prime. To prove this, assume on the contrary
that WLOG we have

vp (m) > vp (n)

Write m = pab, n = pcd where b and d are relatively prime to p. We have a > c.
By Theorem 2 we know that there exists a solution for k such that 11k ≡ 1

(mod pa). However, we now have

pa | gcd(11k − 1,m)

but pa | gcd(11k − 1, n) implies that pa | n contradicting a > c. We are done.

1We explore this function more in depth later
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Example 2.1.2. Let a and b be two relatively prime positive integers, and
consider the arithmetic progression a, a + b, a + 2b, a + 3b, · · · . Prove that
there are infinitely many pairwise relatively prime terms in the arithmetic
progression.

Solution. We use induction. The base case is trivial. Assume that we have a set
with m elements that are all relatively prime. Let this set be S = {a + k1b, a +
k2b, · · · , a + kmb}. Let the set {p1, p2, · · · , pn} be the set of all distinct prime
divisors of elements of S. I claim that we can construct a new element. Let

a+ xb ≡ 1 (mod p1 · p2 · · · · pn)

We know that there exists a solution in x to this equation which we let be x =
km+1. Since gcd (a+ km+1b, a+ kib) = 1, we have constructed a set with size
m+ 1 and we are done.

2.2 Chinese Remainder Theorem

Theorem 2.2.1 (Chinese Remainder Theorem). The system of linear con-
gruences 

x ≡ a1 (mod b1),

x ≡ a2 (mod b2),

· · ·
x ≡ an (mod bn),

where b1, b2, · · · , bn are pairwise relatively prime (aka gcd(bi, bj) = 1 iff i 6= j)
has one distinct solution for x modulo b1b2 · · · bn.

Proof. We use induction. I start with proving that for the case{
x ≡ a1 (mod b1),

x ≡ a2 (mod b2),

there exists a unique solution mod b1b2. To do so, consider the set of numbers

S = {kb1 + a1, 0 ≤ k ≤ b2 − 1}.

By Corollary 1 it follows that the equation kb1 + a1 ≡ a2 (mod b2) has a distinct
solution in k. We have shown the unique existence of a solution to the above
system of linear congruences.
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Assume there is a solution for n = k and I prove that there is a solution for
n = k + 1. Let the following equation have solution x ≡ z (mod b1b2 · · · bk) by
the inductive hypothesis: 

x ≡ a1 (mod b1)

x ≡ a2 (mod b2)

· · ·
x ≡ ak (mod bk).

Therefore to find the solutions to the k + 1 congruences it is the same as finding
the solution to {

x ≡ z (mod b1b2 · · · bk)
x ≡ ak+1 (mod bk+1).

For this we can use the exact same work we used to prove the base case
along with noting that from gcd(bk+1, bi) = 1 for i ∈ {1, 2, · · · , k}, we have
gcd(bk+1, b1b2 · · · bk) = 1.

Example 2.2.1. Find the solution to the linear congruence{
x ≡ 3 (mod 5),

x ≡ 4 (mod 11).

Solution. Notice that we may write x in the form 5k + 3 and 11m+ 4.

x = 5k + 3 = 11m+ 4

Taking this equation mod 5 we arrive at 11m+ 4 ≡ 3 (mod 5) =⇒ m ≡ −1
(mod 5). We substitute m = 5m1− 1 to give us x = 11(5m1− 1) + 4 = 55m1− 7.

Therefore x ≡ 48 (mod 55) which means x = 55k + 48 for some integer k.

Example 2.2.2 (AIME II 2012). For a positive integer p, define the positive
integer n to be p-safe if n differs in absolute value by more than 2 from all mul-
tiples of p. For example, the set of 10-safe numbers is 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 23, ....
Find the number of positive integers less than or equal to 10, 000 which are
simultaneously 7-safe, 11-safe, and 13-safe.
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Solution. We notice that if x is 7-safe, 11-safe, and 13-safe then we must have
x ≡ 3, 4 (mod 7)

x ≡ 3, 4, 5, 6, 7, 8 (mod 11)

x ≡ 3, 4, 5, 6, 7, 8, 9, 10 (mod 13)

By Chinese Remainder Solution this renders solutions mod 1001. We have 2
choices for the value of x mod 7, 6 choices for the value of x mod 11 and 8 choices
for the value of x mod 13. Therefore, we have 2 · 6 · 8 = 96 total solutions mod
1001.

We consider the number of solutions in the set

{1, 2, · · · , 1001}, {1002, · · · , 2002}, {2003, · · · , 3003}, · · · , {9009, · · · , 10010}.

From above there are 96 · 10 = 960 total solutions. However we must subtract the
solutions in the set {10, 001; 10, 002; · · · ; 10, 010}.

We notice that only x = 10, 006 and x = 10, 007 satisfy x ≡ 3, 4 (mod 7).

10, 006 10, 007
(mod 7) 3 4
(mod 11) 7 8
(mod 13) 9 10

These values are arrived from noting that 10, 006 ≡ −4 (mod 7 · 11 · 13) and
10, 007 ≡ −3 (mod 7 · 11 · 13). Therefore x = 10, 006 and x = 10, 007 are the two
values we must subtract off.

In conclusion we have 960− 2 = 958 solutions.

Example 2.2.3. Consider a number line consisting of all positive integers
greater than 7. A hole punch traverses the number line, starting frrom 7 and
working its way up. It checks each positive integer n and punches it if and
only if

(
n
7

)
is divisible by 12. (Here

(
n
k

)
= n!

(n−k)!k! .) As the hole punch checks
more and more numbers, the fraction of checked numbers that are punched
approaches a limiting number ρ. If ρ can be written in the form m

n
, where m

and n are positive integers, find m+ n.

Solution. Note that(
n

7

)
=

n!

(n− 7)!7!
=
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)

24 · 32 · 5 · 7
.



Justin Stevens 43

In order for this to be divisible by 12 = 22 · 3, the numerator must be divisible
by 26 · 33. (We don’t care about the 5 or the 7; by the Pigeonhole Principle these
will be canceled out by factors in the numerator anyway.) Therefore we wish to
find all values of n such that

26 · 33 |n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6).

We start by focusing on the factors of 3, as these are easiest to deal with. By
the Pigeonhole Principle, the expression must be divisible by 32 = 9. Now, if
n ≡ 0, 1, 2, 3, 4, 5, or 6 (mod 9), one of these seven integers will be a multiple of
9 as well as a multiple of 3, and so in this case the expression is divisible by 27.
(Another possibility is if the numbers n, n − 3, and n − 6 are all divisible by 3,
but it is easy to see that this case has already been accounted for.)

Now, we have to determine when the product is divisible by 26. If n is even,
then each of n, n− 2, n− 4, n− 6 is divisible by 2, and in addition exactly two of
those numbers must be divisible by 4. Therefore the divisibility is sure. Otherwise,
n is odd, and n− 1, n− 3, n− 5 are divisible by 2.

• If n− 3 is the only number divisible by 4, then in order for the product to
be divisible by 26 it must also be divisible by 16. Therefore n ≡ 3 (mod 16)
in this case.

• If n−1 and n−5 are both divisible by 4, then in order for the product to be
divisible by 26 one of these numbers must also be divisible by 8. Therefore
n ≡ 1, 5 (mod 8) =⇒ n ≡ 1, 5, 9, 13 (mod 16).

Pooling all our information together, we see that

(
n

7

)
is divisible by 12 iff n

is such that {
n ≡ 0, 1, 2, 3, 4, 5, 6 (mod 9),

n ≡ 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14 (mod 16).

There are 7 possibilities modulo 9 and 13 possibilities modulo 16, so by CRT there
exist 7 × 13 = 91 solutions modulo 9 × 16 = 144. Therefore, as more and more

numbers n are checked, the probability that

(
n

7

)
is divisible by 12 approaches

91

144
. The requested answer is 91 + 144 = 235 .
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Example 2.2.4 (Austin Shapiro). Call a lattice point “visible” if the greatest
common divisor of its coordinates is 1. Prove that there exists a 100 × 100
square on the board none of whose points are visible.

Solution. Let the points on the grid be of the form

(x, y) = (a+m, b+ n), 99 ≥ m,n ≥ 0.

We are going to use the Chinese Remainder Theorem to have every single
term have a common divisor among the two coordinates. For the remainder of the
problem assume that the sequence {pj} is a sequence of distinct prime numbers.

Let a ≡ 0

(
mod

100∏
i=1

pi

)
. Then let


b ≡ 0 (mod p1)

b+ 1 ≡ 0 (mod p2)

· · ·
b+ 99 ≡ 0 (mod p100).

We find that repeating this process with letting a+ 1 ≡ 0

(
mod

200∏
i=101

pi

)
and

defining similarly 
b ≡ 0 (mod p101)

b+ 1 ≡ 0 (mod p102)

· · ·
b+ 99 ≡ 0 (mod p200)

gives us the following:



a ≡ 0

(
mod

100∏
i=1

pi

)

a+ 1 ≡ 0

(
mod

200∏
i=101

pi

)
· · ·

a+ 99 ≡ 0

(
mod

10000∏
i=9901

pi

)
and



b ≡ 0

(
mod

99∏
i=0

p100i+1

)

b+ 1 ≡ 0

(
mod

99∏
i=0

p100i+2

)
· · ·

b+ 99 ≡ 0

(
mod

100∏
i=1

p100i

)
.
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This notation looks quite intimidating; take a moment to realize what it is
saying. It is letting each a + k be divisible by 100 distinct primes, then letting b
be divisible by the first of these primes, b + 1 be divisible by the second of these
primes and so forth. This is precisely what we did in our first two examples above.
By CRT we know that a solution exists, therefore we have proven the existence
of a 100× 100 grid.

Motivation. This problem requires a great deal of insight. When I solved this
problem, my first step was to think about completing a 1× 100 square as we did
above. Then you have to think of how to extend this method to a 2× 100 square
and then generalizing the method all the way up to a 100 × 100 square. Notice
that our construction is not special for 100, we can generalize this method to a
x× x square!

2.3 Euler’s Totient Theorem and Fermat’s Little

Theorem

Theorem 2.3.1 (Euler’s Totient Theorem). For a relatively prime to m, we
have aφ(m) ≡ 1 (mod m).

Proof. Using Theorem 2.1.1 the sets {a1, a2, · · · , aφ(m)} and {aa1, aa2, · · · , aaφ(m)}
are the same mod m. Therefore, the products of each set must be the same mod
m

aφ(m)a1a2 · · · aφ(m) ≡ a1a2 · · · aφ(m) (mod m) =⇒ aφ(m) ≡ 1 (mod m).

Corollary 2.3.1 (Fermat’s Little Theorem). For a relatively prime to a prime
p, we have ap−1 ≡ 1 (mod p).

Proof. Trivial.

Example. Find 298 (mod 33).

We do this problem in two different ways.
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Solution. Notice that we may not directly use Fermats Little Theorem because
33 is not prime. However, we may use Fermats little theorem in a neat way:
Notice that 22 ≡ 1 (mod 3) and 210 ≡ 1 (mod 11) from Fermats Little Theorem.
We will find 298 (mod 3) and 298 (mod 11) then combine the results to find 298

(mod 33).
298 ≡ (22)49 ≡ 149 ≡ 1 (mod 3),

298 ≡
[
(210)9

] (
28
)
≡ 28 ≡ 256 ≡ 3 (mod 11).

Let x = 298. Therefore, x ≡ 1 (mod 3) and x ≡ 3 (mod 11). Inspection gives us
x ≡ 25 (mod 33).

OR

Solution. We will use Euler’s Totient Theorem. Notice that φ(33) = 33(1− 1
3
)(1−

1
11

) = 20, therefore 220 ≡ 1 (mod 33). Now, notice that

x = 298 = (220)52−2 ≡ 4−1 (mod 33).

Therefore, since x ≡ 4−1 (mod 33) =⇒ 4x ≡ 1 (mod 33). Using quick analysis,
x ≡ 25 (mod 33) solves this hence 298 ≡ 25 (mod 33). Our answer matches our
answer above so we feel fairly confident in it.

Example 2.3.1 (Brilliant.org). For how many integer values of i, 1 ≤ i ≤
1000, does there exist an integer j, 1 ≤ j ≤ 1000, such that i is a divisor of
2j − 1?

Solution. For i even it is clear that we can’t have i|(2j−1). For i odd let j = φ(i)
to give us 2φ(i) − 1 ≡ 0 (mod i). Since φ(i) < 1000 it follows that for i odd there
is always a value of j and hence the answer is 1000

2
= 500 .

Example 2.3.2 (Brilliant.org). How many prime numbers p are there such
that 29p + 1 is a multiple of p?

Solution. When p = 29 we have 29 - 29p + 1. Therefore we have gcd(p, 29) = 1.
By Fermat’s Little Theorem

29p + 1 ≡ 29 + 1 ≡ 0 (mod p).

Therefore it follows that p | 30 and hence p = 2, 3, 5 for a total of 3 numbers.
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Example 2.3.3 (AIME 1983). Let an = 6n + 8n. Determine the remainder
on dividing a83 by 49.

Solution. Notice that φ(49) = 42. Therefore, 684 ≡ 1 (mod 49) and 884 ≡ 1
(mod 49).

683 + 883 ≡ (684)(6−1) + (884)(8−1) (mod 49)

≡ 6−1 + 8−1 (mod 49)

Via expanding both sides out we find:

6−1 + 8−1 ≡ (6 + 8)6−18−1 (mod 49)

≡ (14) 48−1 (mod 49)

≡ (14) (−1) (mod 49)

≡ 35 (mod 49)

Tip 2.3.1. When dealing with aφn−1 (mod n) it is often easier to compute a−1

(mod n) then to compute aφn−1 (mod n) directly.

Example 2.3.4 (All Russian MO 2000). Evaluate the sum⌊
20

3

⌋
+

⌊
21

3

⌋
+

⌊
22

3

⌋
+ · · ·+

⌊
21000

3

⌋
.

Solution. Note that we have

2x ≡

{
1 (mod 3) when x is even,

2 (mod 3) when x is odd.

Therefore

1000∑
n=0

⌊
2n

3

⌋
= 0 +

500∑
n=1

(⌊
22n−1

3

⌋
+

⌊
22n

3

⌋)
=

500∑
n=1

(
22n−1 − 2

3
+

22n − 1

3

)

=
1

3

500∑
n=1

(22n−1 + 22n − 1) =
1

3

1000∑
n=1

2n − 500 =
1

3
(21001 − 2)− 500 .



2.3. Euler’s Totient Theorem and Fermat’s Little Theorem 48

Tip 2.3.2. When working with floor functions, try to find a way to make the
fractions turn into integers.

Example 2.3.5 (HMMT 2009). Find the last two digits of 10321032. Express
your answer as a two-digit number.

Solution.

{
10321032 ≡ 0 (mod 4)

10321032 ≡ 71032 ≡ (−1)516 ≡ 1 (mod 25)
=⇒ 10321032 ≡ 76

(mod 100)

Tip 2.3.3. When we have to calculuate a (mod 100) it is often more helpful to

find

{
a (mod 4)

a (mod 25)
and then using the Chinese Remainder Theorem to find a

(mod 100). We can do similar methods when dealing with a (mod 1000).

Example 2.3.6 (Senior Hanoi Open MO 2006). Calculuate the last three
digits of 200511 + 200512 + · · ·+ 20052006.

Solution. By reducing the expression modulo 1000, it remains to find the last
three digits of the somewhat-less-daunting expression

200511 + 200512 + · · ·+ 20052006 ≡ 511 + 512 + · · ·+ 52006 (mod 1000).

Notice that 511 + 512 + · · ·+ 52006 ≡ 0 (mod 125).
Next, we want 511 + 512 + · · · + 52006 (mod 8). Notice that 52 ≡ 1 (mod 8)

and therefore 52k ≡ 1 (mod 8) and 52k+1 ≡ 5 (mod 8). Henceforth

511 + 512 + · · ·+ 52006 ≡ 1996

2
(1 + 5) ≡ 4 (mod 8)

.
Therefore 511 + 512 + · · ·+ 52006 ≡ 500 (mod 1000).
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Example 2.3.7 (PuMACa). Calculuate the last 3 digits of 200820072006
···2

1

.

aPrinceton University Mathematics Competition

Solution. To begin we notice 200820072006
···2

1

≡ 0 (mod 8).
Next, we notice via Euler’s Totient:

200820072006
···2

1

≡ 200820072006
···2

1

(mod φ(125)) (mod 125)

Now notice

20072006···
21

≡ 72006···
21

(mod 100) ≡ 1 (mod 100)

since 74 ≡ 1 (mod 100). Therefore 200820072006
···2

1

≡ 20081 ≡ 8 (mod 125).
Henceforth

200820072006
···2

1

≡ 8 (mod 1000).

Tip 2.3.4. When a and n are relatively prime we have

ab ≡ ab (mod φ(n)) (mod n)

It then suffices to calculuate b (mod φ(n)).

Example 2.3.8 (PuMAC 2008). Define f(x) = xx
xx

. Find the last two digits
of f(17) + f(18) + f(19) + f(20).

Solution. We compute each individual term seperately.

• f(20) ≡ 0 (mod 100)

•

{
f(19) ≡ (−1)19

1919 ≡ −1[4]

f(19) ≡ 191919
19

(mod φ25) ≡ 19−1 ≡ 4[25]
=⇒ f(19) ≡ 79[100]

•

{
181818

18

≡ 0[4]

184 ≡ 1[25] =⇒ 181818
18

≡ 1 (mod 25)
=⇒ f(18) ≡ 76[100]
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• {
f(17) ≡ 1 (mod 4)

f(17) ≡ 171717
17

(mod 20) (mod 25)

φ(20) = 8 =⇒ 171717 ≡ 17 (mod 20)

f(17) ≡ 1717 (mod 25)

1716 ≡ (172)8 ≡ ((14)2)
4 ≡

(
(−4)2

)2 ≡ 162 ≡ 6 (mod 25)

=⇒ f(17) ≡ (17) (6) ≡ 2 (mod 25)

−→ f(17) ≡ 77 (mod 100)

Therefore

f(17) + f(18) + f(19) + f(20) ≡ 77 + 76 + 79 + 0 ≡ 232 ≡ 32 (mod 100)

Example 2.3.9 (AoPS). Show that for c ∈ Z and a prime p, the congruence
xx ≡ c (mod p) has a solution.

Solution. Suppose that x satisfies the congruences{
x ≡ c (mod p),

x ≡ 1 (mod p− 1).

Then by Fermat’s Little Theorem we have

xx ≡ xx (mod p−1) ≡ x1 ≡ c (mod p).

All that remains is to show that there actually exists a number with these proper-
ties, but since (p, p−1) = 1, there must exist such a solution by Chinese Remainder
Theorem. �
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Example 2.3.10 (Balkan). Let n be a positive integer with n ≥ 3. Show that

nn
nn

− nnn

is divisible by 1989.

Solution. Note that 1989 = 32×13×17. Therefore, we handle each case separately.

• First, we prove that

nn
nn

≡ nn
n

(mod 9)

for all n. If 3|n then we are done. Otherwise, since φ(9) = 6, the problem
reduces itself to proving that

nn
n ≡ nn (mod 6)

This is not hard to show true. It is obvious that nn
n ≡ nn (mod 2), and

(as long as n is not divisible by 3) showing the congruence modulo 3 is
equivalent to showing that nn ≡ n (mod φ(3)), which is trivial since n and
nn have the same parity.

• Next, we prove that

nn
nn

≡ nn
n

(mod 13)

This is a very similar process. If 13|n we are done; otherwise, the problem
is equivalent to showing that

nn
n ≡ nn (mod 12)

We have already shown that these two expressions are congruent modulo
3, and showing that they are equivalent modulo 4 is equivalent to showing
that nn ≡ n (mod φ(4)), and since φ(4) = 2 this is trivial. Therefore they
are congruent modulo 12 and this second case is complete.

• Finally, we prove that

nn
nn

≡ nn
n

(mod 17)

, which once again is quite similar. If 17|n we are done, otherwise the
problem reduces itself to proving that

nn
n ≡ nn (mod 16)

If 2|n in this case then the problem is solved; otherwise, it reduces itself
again to proving that nn ≡ n (mod 8). This is the most difficult case of this



2.3. Euler’s Totient Theorem and Fermat’s Little Theorem 52

problem, but it is still not hard. Note that since n is odd, n2 ≡ 1 (mod 8).
Therefore nn−1 ≡ 1 (mod 8) and nn ≡ n (mod 8). Through this, we have
covered all possibilities, and so we are done with the third case.

We have shown that the two quantities are equivalent modulo 9, 13, and 17, so by
Chinese Remainder Theorem they must be equivalent modulo 9×13×17 = 1989,
as desired.

Example 2.3.11 (Canada 2003). Find the last 3 digits of 200320022001.

Solution. Taking the number directly mod 1000 doesn’t give much (try it out and
see!) Therefore we are going to do it in two different parts: Find the value mod
8 and find the value mod 125 then combine the two values. First off note that
φ(8) = 4 and φ(125) = 100.

{
200320022001 ≡ 320022001 (mod 8)

20022001 ≡ 0 (mod φ(8))
=⇒ 320022001 ≡ 30 ≡ 1 (mod 8)

Now notice that 200320022001 ≡ 320022001 (mod 125). To find this we must find
20022001 ≡ 22001 (mod φ(125) = 100). We split this up into finding 22001 (mod 4)
and 22001 (mod 25):

{
22001 ≡ 0 (mod 4)

22001 = 21(220)100 = 21(2φ(25))100 ≡ 2 (mod 25)
=⇒ x ≡ 52 (mod 100)

Therefore we have 320022001 ≡ 352 (mod 125). It is a tedious work but as this
problem appeared on a mathematical olympiad stage it should be done by hand.

352 ≡ (35)10(32) (mod 125)

≡ (−7)10(9) (mod 125) ≡ (49)5(9) (mod 125)

≡
(
492
)2

(49)(9) (mod 125) ≡ (262)(49)(9) (mod 125)

≡ (51)(49)(9) (mod 125) ≡ −9 ≡ 116 (mod 125)

Let x = 200320022001 .{
x ≡ 1 (mod 8) =⇒ x = 8k + 1

x ≡ 116 (mod 125) =⇒ x = 125m+ 116
.
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Therefore, x = 125m+ 116 = 8k+ 1. Taking mod 8 of this equation we arrive
at 5m + 4 ≡ 1 (mod 8) or 5m ≡ 5 (mod 8) hence m ≡ 1 (mod 8). Henceforth
we have m = 8m1 + 1 or

x = 125(8m1 + 1) + 116 = 1000m1 + 241.

Therefore x ≡ 241 (mod 1000).

Tips. These are very helpful tips for dealing with problems involving expo-
nentation.

• When dealing with aφn−1 (mod n) it is often easier to compute a−1 (mod n)
then to compute aφn−1 (mod n) directly.

• When we have to calculuate a (mod 100) it is often more helpful to find{
a (mod 4)

a (mod 25)
and then using the Chinese Remainder Theorem to find a

(mod 100). We can do similar methods when dealing with a (mod 1000).

• When a and n are relatively prime we have

ab ≡ ab (mod φ(n)) (mod n)

It then suffices to calculuate b (mod φ(n)).

Example 2.3.12 (Balkan MO 1999). Let p > 2 be a prime number such that
3|(p− 2). Let

S = {y2 − x3 − 1|0 ≤ x, y ≤ p− 1 ∩ x, y ∈ Z}

Prove that there are at most p elements of S divisible by p.

Solution. Despite the intimidiating notation, all that it is saying for S is that S
is the set of y2 − x3 − 1 when x and y are positive integers and 0 ≤ x, y ≤ p− 1
(essentially meaning x, y are reduced mod p).

Lemma. When a 6≡ b (mod p) we have a3 6≡ b3 (mod p).
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Proof. Assuming to the contrary that for some a, b with a 6≡ b (mod p) we have
a3 ≡ b3 (mod p). Since p−2

3
is an integer raising both sides to that power gives us

(a3)
p−2
3 ≡ (b3)

p−2
3 (mod p)

ap−2 ≡ bp−2 (mod p)

a−1 ≡ b−1 (mod p)

a ≡ b (mod p)

With the last step following from the fact that every element has a unique
inverse mod p.

We now count how many ways we have y2 − x3 − 1 ≡ 0 (mod p). Notice that
we must have x3 ≡ y2− 1 (mod p). For each value of y there is at most one value
of x which corresponds to it. Since there are a total of p values of y there is at
most p pairs (x, y) such that y2 − x3 − 1 ≡ 0 (mod p).

Motivation. The motivation behind this solution was trying a simple case. When
p = 5 we notice that we have:

x (mod 5) x2 (mod 5) x3 (mod 5)
0 0 0
1 1 1
2 4 3
3 4 2
4 1 4

We need for the difference of an x2 and y3 to be 1. We notice that for each
value of x2 there can only be one value of y3 that goes along with it. Then we go
on to prove the general case.

Example 2.3.13 (USAMO 1991). Show that, for any fixed integer n ≥ 1,
the sequence

2, 22, 222 , 222
2

, . . . (mod n)

is eventually constant.
[The tower of exponents is defined by a1 = 2, ai+1 = 2ai. Also ai (mod n)

means the remainder which results from dividing ai by n.]
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Solution. First, define the recursive sequence {ak} such that a1 = 2 and ai+1 = 2ai

for each i ≥ 1. It is clear that the sequence of ai’s maps to the sequence of integers
described in the original problem.

In addition, for each positive integer n, consider a recursive sequence {bk} such
that b1 is the largest odd integer that evenly divides n and for each i ≥ 1, bi+1

is the largest odd integer that evenly divides φ(bi). For example, when n = 62,
b1 = 31, b2 = 15, and b3 = 1. Note that it is obvious that at some positive integer
i we have bi = 1, since the sequence of bi’s is monotonically decreasing.

Now consider a term of the sequence of towers of 2 with a sufficient number
of 2s, say am. We wish to have for all sufficiently large m:

am+1 ≡ am (mod n)

Note that we can write n in the form 2k1b1, where k1 is a nonnegative integer. By
Chinese Remainder Theorem, it suffices to check{

am+1 ≡ am (mod 2k1),

am+1 ≡ am (mod b1).

Since m is sufficiently large, am+1 ≡ am ≡ 0 (mod 2k1). All that remains is to
check if am+1 ≡ am (mod b1). By Euler’s Totient Theorem, since gcd(2, b1) = 1
we have 2φ(b1) ≡ 1 (mod b1), so

am = 2am−1 ≡ 2am−1 mod φ(b1) (mod b1).

Therefore, we now want am ≡ am−1 (mod φ(b1)). Since φ(b1) = 2k2b2 we must
check {

am ≡ am−1 (mod 2k2),

am ≡ am−1 (mod b2).

Because m is sufficiently large

am ≡ am−1 ≡ 0 (mod 2k2),

and so it suffices to check if am ≡ am−1 (mod b2). We can continue this method
all the way down to the integer i such that bi = 1 at which point the equation
am ≡ am−1 ≡ 0 (mod bi) is clearly true so hence we have arrived at a true
statement. Therefore am+1 ≡ am (mod n) for sufficiently large m and we are
done.

Motivation. The choice for the bi sequence may be a bit confusing therefore I try
my best to explain the motivation here.
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When wishing to prove am+1 ≡ am (mod n) by Euler’s Totient we try to see
if we can have am ≡ am−1 (mod φ(n)). If φ(n) was odd then we could continue
on this method until we have φ (φ(· · ·φ(n))) = 1 at which point since we have
chosen m to be sufficiently large we would get a true statement.

Thankfully we patch the arugment by considering the largest odd divisor of
φ(n) and using Chinese Remainder Theorem. That is where the idea for the bi
sequence comes from.

Example 2.3.14 (ISL 2005 N6). Let a, b be positive integers such that bn +n
is a multiple of an + n for all positive integers n. Prove that a = b.

Solution. I desire to prove that for all primes b ≡ a (mod p). Fix a to be a
constant value and I construct a way to find the corresponding value of n which
tells us that b ≡ a (mod p). Notice that the following conditions are the same:

(an + n) | (bn + n) ⇐⇒ (an + n) | (bn − an).

We set {
n ≡ −a (mod p),

n ≡ 1 (mod p− 1).

Because n ≡ 1 (mod p − 1) we have an ≡ a (mod p) via Fermat’s Little
Theorem. Also, because n ≡ −a (mod p) we have p|(an + n) =⇒ p|(bn − an)
However, bn ≡ b (mod p) and an ≡ a (mod p) from n ≡ 1 (mod p− 1) therefore
b ≡ a (mod p) for all primes p hence b = a.

Motivation. The way I solved this problem was consider the case when a = 1 at
first. In this case we must have (n+ 1) | bn+n. We desire to prove b ≡ 1 (mod p)
for all primes p. We notice that bn +n ≡ bn− 1 (mod n+ 1). If we have p|(n+ 1)
and bn ≡ b (mod p) then we would be done. The condition bn ≡ b (mod p) is
satisfied when n ≡ 1 (mod p − 1) and the condition p|(n + 1) is satisfied when
n ≡ −1 (mod p). Therefore we have proven the problem for a = 1.

2.3.1 Problems for the reader

2.1. (2003 Polish) Find all polynomials W with integer coefficients satisfying the
following condition: for every natural number n, 2n − 1 is divisible by W (n).
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2.4 The equation x2 ≡ −1 (mod p)

Theorem 2.4.1 (Wilson’s). (p− 1)! ≡ −1 (mod p) for all odd primes p.

Proof. Start out with looking at a few examples. p = 5 gives 4! = 24 ≡ −1
(mod 5). However, another way to compute this is to note that

4! = (1 · 4)(2 · 3) ≡ (4)(6) ≡ (1)(4) ≡ −1 (mod 5).

We test p = 7 which gives 6! = 720 = 7(103)− 1 ≡ −1 (mod 7) Also,

6! = (1 · 6) (2 · 4) (3 · 5) = (6)(8)(15) ≡ (6)(1)(1) ≡ −1 (mod 7).

What we are doing is we are looking at all the terms in (p−1)! and finding groups
of two that multiply to 1 mod p. I will now prove that this method always works.

Notice that for all x ∈ {2, 3, · · · , p− 2} there exists a y 6= x such that xy ≡ 1
(mod p) by Theorem 2 and the fact that x2 ≡ 1 (mod p) ⇐⇒ x ≡ ±1 (mod p).
Since p is odd, we can pair the inverses off into p−3

2
pairs. Let these pairs be

(x1, y1), (x2, y2), (x3, y3), · · · (x(p−3)/2, y(p−3)/2)
Therefore,

(p− 1)! ≡ (1)(p− 1) (x1y1) (x2y2) · · ·
[
x(p−3)/2y(p−3)/2

]
(mod p)

≡ (1)(p− 1) (1) (1) · · · (1) (mod p)

≡ −1 (mod p).

Theorem 2.4.2. There exists an x with x2 ≡ −1 (mod p) if and only if p ≡ 1
(mod 4).

Proof. For the first part notice that

x2 ≡ −1 (mod p)

(x2)
p−1
2 ≡ (−1)

p−1
2 (mod p)

xp−1 ≡ (−1)
p−1
2 (mod p)

1 ≡ (−1)
p−1
2 (mod p),

which happens only when p ≡ 1 (mod 4).



2.4. The equation x2 ≡ −1 (mod p) 58

Now proving the other way requires a bit more work. First off from Wilsons
theorem (p− 1)! ≡ −1 (mod p). Therefore our equation turns into x2 ≡ (p− 1)!
(mod p). Notice that

(p− 1)! = [(1)(p− 1)] [(2)(p− 2)] · · ·
[(

p− 1

2

)(
p+ 1

2

)]
≡ [(1)(−1)] [(2)(−2)]

[(
p− 1

2

)(
−p− 1

2

)]
(mod p)

≡ (−1)
p−1
2

[(
p− 1

2

)
!

]2
(mod p)

≡
[(

p− 1

2

)
!

]2
(mod p)

Therefore x =
(
p−1
2

)
! solves the equation and we have proven the existence of

x.

Example 2.4.1. Prove that there are no positive integers x, k and n ≥ 2 such
that x2 + 1 = k(2n − 1).

Solution. Notice that the condition is equivalent to x2 + 1 ≡ 0 (mod 2n − 1).
Since 2n − 1 ≡ 3 (mod 4) it follows that there exists a prime divisor of 2n − 1
that is of the form 3 (mod 4) (if not then 2n − 1 ≡ 1 (mod 4)). Label this prime
divisor to be p. Therefore we have

x2 + 1 ≡ 0 (mod p)→←

Example 2.4.2 (Korea 1999). Find all positive integers n such that 2n − 1
is a multiple of 3 and (2n − 1)/3 is a divisor of 4m2 + 1 for some integer m.

Solution. Since 2n−1 ≡ 0 (mod 3), we must have n = 2k. Therefore, our desired

equation is 4k−1
3
|4m2 + 1. I claim that k = 2m for m ≥ 0 is a solution to this.

To prove this requires using difference of squares and then the Chinese remainder
theorem:

4k − 1

3
=

42m − 1

3
=

(42m−1
+ 1)(42m−2

+ 1) · · · (4 + 1)(4− 1)

3

= (42m−1

+ 1)(42m−2

+ 1) · · · (4 + 1).
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We must have 4m2 + 1 ≡ 0 (mod (42m−1
+ 1)(42m−2

+ 1) · · · (4 + 1)). To use the
Chinese Remainder Theorem to seperate this into different parts we must have
all numbers in the product to be relatively prime. To prove this we notice that
42a + 1 = 22a+1

+ 1 and then use the following lemma.

Lemma. Define Fm = 22m + 1 to be a Fermat number. Prove that all Fermat
numbers are pairwise relatively prime.

Proof. ([12])
Start out with noting that Fm = Fm−1Fm−2 · · ·F0 + 2. To prove this we use

induction. Notice that for m = 1, we have F1 = F0 + 2 since F1 = 221 + 1 = 5 and
F0 = 220 + 1 = 3. Assume this holds for m = k and I prove it holds for m = k+ 1.

Fm+1 = FmFm−1 · · ·F0 + 2

⇐⇒ Fm+1 = Fm(Fm − 2) + 2 from inductive hypothesis

⇐⇒ Fm+1 = F 2
m − 2Fm + 2

⇐⇒ Fm+1 = (Fm − 1)2 + 1

⇐⇒ Fm+1 = (22m)2 + 1

The last step is true by definition therefore our induction is complete.
Now for 0 ≤ i ≤ m− 1,

gcd(Fm, Fi) = gcd [Fm−1Fm−2 · · ·F0 + 2− Fi(Fm−1Fm−2 · · ·Fi+1Fi−1 · · ·F0), Fi] = gcd(2, Fi) = 1.

When we range m over all possible non-negative integers we arrive at the conclu-
sion that all pairs of Fermat numbers are relatively prime.

Notice that each term in the mod is the same as a Fermat number as 42a =
22a+1

= Fa+1 for a ≥ 0. Hence, by Chinese Remainder Theorem the condition

4m2 + 1 ≡ 0 (mod (42m−1

+ 1)(42m−2

+ 1)(· · · )(4 + 1))

is the same as 
4m2 + 1 ≡ 0 (mod 42m−1

+ 1),

4m2 + 1 ≡ 0 (mod 42m−2
+ 1),

· · ·
4m2 + 1 ≡ 0 (mod 4 + 1).

Now, notice that 42a + 1 = 4(42a−1) + 1 = 4
(
22a−1)2 + 1 for a ≥ 0. Therefore,

the solution to the equation 4m2+1 ≡ 0 (mod 42a +1) is m ≡ 22a−1 (mod 42a +1).
Therefore by Chinese Remainder Theorem there exists an m that satisfies all the
above congruences and we have proved k = 2m for m ≥ 0 works.
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Assume that k 6= 2m and hence k = p2m for m ≥ 0 and p being an odd integer
that is not 1. Then

42mp − 1

3
=

(42m−1p + 1)(42m−2p + 1) · · · (4p + 1)(4p − 1)

3
.

Notice that we must have

4m2 + 1 ≡ 0

(
mod

42m∗p − 1

3

)
=⇒ 4m2 + 1 ≡ 0

(
mod

4p − 1

3

)
Notice that

4p − 1

3
=

(2p − 1) (2p + 1)

3
. However, since p is odd we have

3 | 2p + 1 so

4m2 + 1 ≡ 0

(
mod

4p − 1

3

)
=⇒ 4m2 + 1 ≡ 0 (mod 2p − 1)

Since p > 1 we clearly have 2p−1 ≡ 3 (mod 4). Assume that all prime divisors
of 2p − 1 are of the form 1 (mod 4). However, this would imply that 2p − 1 ≡ 1
(mod 4) a contradiction therefore there exists at least one prime divisor of 2p − 1
that is of the form 3 (mod 4). Label this prime divisor to be z.

(2m)2 ≡ −1

(
mod

4p − 1

3

)
≡ −1 (mod z)

but by Theorem 3 this is a contradiction. Henceforth the answer is k = 2m for
m ≥ 0; therefore n = 2r for r ≥ 1.

2.5 Order

Definition 2.5.1. The order of a mod m (with a and m relatively prime) is the
smallest positive integer x such that ax ≡ 1 (mod m). We write this as x = ordma
or sometimes shorthanded to oma.

Example. The order of 2 mod 9 is 6 because 21 ≡ 2 (mod 9), 22 ≡ 4 (mod 9), 23 ≡
8 (mod 9), 24 ≡ 7 (mod 9), 25 ≡ 5 (mod 9), 26 ≡ 1 (mod 9).

Example. Prove that the order of a mod m (with a and m relatively prime) is
less than or equal to φ(m).

Proof. By Euler’s Totient theorem we have

aφ(m) ≡ 1 (mod m)

Since order is the smallest x such that ax ≡ 1 (mod m) it follows that x ≤
φ(m).
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The following theorem is incredibly important and we will use it a lot through-
out the document.

Theorem 2.5.1. For relatively prime positive integers a and m prove that
an ≡ 1 (mod m) if and only if

ordma | n

Proof. If ordma | n then we have n = ordmaq for some q. Therefore

an ≡
(
aordma

)q ≡ 1 (mod m)

Now to prove the other direction. By the division algorithm we can write

n = (ordma) q + r 0 ≤ r < ordam, q ∈ Z

We now notice that

a(ordma)q+r = an ≡ 1 (mod m)

=⇒ a(ordma)qar ≡ 1 (mod m)

=⇒ ar ≡ 1 (mod m)

However r < ordma contradicting the minimality of ordma if r 6= 0. Therefore
r = 0 and we are done.

Corollary 2.5.1. For relatively prime positive integers a and m

ordma | φ(m)

Proof. Set n = φ(m) and use Euler’s Totient theorem.

Example 2.5.1. For positive integers a > 1 and n find ordan−1 (a)

Solution. We check that the order exists by noting gcd(an−1, a) = 1. Notice that

ordan−1 (a) = x ⇐⇒ ax − 1 ≡ 0 (mod an − 1)

For 1 ≤ x < n we have ax − 1 < an − 1 therefore ax − 1 ≡ 0 (mod an − 1) is
impossible. For x = n we have an− 1 ≡ 0 (mod an− 1). Therefore ordan−1 (a) =
n .
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Example 2.5.2 (AIME 2001). How many positive integer multiples of 1001
can be expressed in the form 10j−10i, where i and j are integers and 0 ≤ i <
j ≤ 99?

Solution. We must have

1001 | 10i
(
10j−i − 1

)
=⇒ 1001 | 10j−i − 1

Notice that ord1001 (10) = 6 since 103 ≡ −1 (mod 1001) and 101, 102, 104, 105 6=
1 (mod 1001). By theorem 8 we must now have 6 | j − i.

We now relate this problem into a counting problem. In the case that j ≡ i ≡ 0
(mod 6) there are 17 values between 0 and 99 inclusive that satisfy this. We notice
that if we choice two different values out of these 17 values, then one must be j
and the other must be i since i < j. Therefore there are

(
17
2

)
solutions in this

case.
Simiarly, when j ≡ i ≡ 1 (mod 6), j ≡ i ≡ 2 (mod 6), j ≡ i ≡ 3 (mod 6) we

get
(
17
2

)
solutions. When j ≡ i ≡ 4 (mod 6) and j ≡ i ≡ 5 (mod 6) we get only

16 values between 0 and 99 henceforth we get
(
16
2

)
solutions.

Our answer is 4
(
17
2

)
+ 2
(
16
2

)
= 784 .

Example 2.5.3. Prove that if p is prime, then every prime divisor of 2p − 1
is greater than p.

Solution. Let q be a prime divisor of 2p − 1. Therefore we have ordq (2) | p by
Theorem 8. Since p is prime we have

ordq (2) ∈ {1, p}

However, ordq (2) = 1 implies that 2 ≡ 1 (mod q) absurd. Therefore ordq (2) = p.
We also have

ordq (2) | φ(q) =⇒ p | q − 1

Therefore q ≥ p+ 1 and hence q > p and we are done.

Example 2.5.4. Let p be an odd prime, and let q and r be primes such that
p divides qr + 1. Prove that either 2r | p− 1 or p | q2 − 1.
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Solution. Because p is odd and p | qr+1 we have p - qr−1. Also we have p | q2r−1.
Henceforth by Theorem 8

ordp (q) | 2r

However since ordp(q) 6= r we have ordp(q) ∈ {1, 2, 2r}.
When ordp(q) = 2r we have ordp(q) | φ(p) = p− 1 we have 2r | p− 1.
When ordp(q) ∈ {1, 2} in the first case we get p | q − 1 and in the second we

get p | q2 − 1. In conclusion we get p | q2 − 1.
Therefore 2r | p− 1 or p | q2 − 1

Example 2.5.5. Let a > 1 and n be given positive integers. If p is an odd
prime divisor of a2

n
+ 1, prove that p− 1 is divisible by 2n+1.

Solution. Since p is odd we have p - a2n−1. We also have p |
(
a2

n − 1
) (
a2

n
+ 1
)

=

a2
n+1 − 1. Therefore

ordp (a) | 2n+1

However ordp(a) - 2n (since if it did then we would have p | a2n − 1) hence

ordp(a) = 2n+1

We know that ordp(a) | p− 1 hence 2n+1 | p− 1.

Example 2.5.6 (Classical). Let n be an integer with n ≥ 2. Prove that n
doesn’t divide 2n − 1.

Solution. Let p be the smallest prime divisor of n. We have

p | n | 2n − 1

By theorem 8 it follows that ordp(2) | n. However notice that ordp(2) ≤ φ(p) < p
contradicting p being the smallest prime divisor of n.

Example 2.5.7. Prove that for all positive integers a > 1 and n we have
n | φ(an − 1).

Solution. Since gcd(an − 1, a) = 1 we consider ordan−1 (a). From above, we have
ordan−1 (a) = n

Now by theorem 8 we have ordan−1 (a) | φ(an − 1) hence n | φ(an − 1) as
desired.
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Motivation. The motivation to work mod an−1 stems from the fact that we want
a value to divide φ(an − 1) so hence we will likely use order mod an − 1. After a
bit of thought we think to look at orda (an − 1).

Example 2.5.8. If a and b are positive integers relatively prime to m with
ax ≡ bx (mod m) and ay ≡ by (mod m) prove that

agcd(x,y) ≡ bgcd(x,y) (mod m).

Solution. We have that

ax ≡ bx (mod m)

bx
[(
a · b−1

)x − 1
]
≡ 0 (mod m)(

a · b−1
)x ≡ 1 (mod m)

Set z ≡ a·b−1 (mod m). From zx ≡ 1 (mod m) we have ordm (z) | x. Simiarly
we have ordm (z) | y therefore

ordm (z) | gcd(x, y)

From this we arrive at

zgcd(x,y) ≡ 1 (mod m)(
a · b−1

)gcd(x,y) ≡ 1 (mod m)

agcd(x,y) ≡ bgcd(x,y) (mod m)

Example 2.5.9. Let a and b be relatively prime integers. Prove that any odd
divisor of a2

n
+ b2

n
is of the form 2n+1m+ 1.

Solution. It suffices to prove that all prime divisors of a2
n

+ b2
n

are 1 (mod 2n+1).
If we could do this, by multiplying the prime divisors together we get that all
divisors are of the form 1 (mod 2n+1). We let q be an odd divisor of a2

n
+ b2

n
.

Since gcd(a, b) = 1 it follows that gcd(q, a) = 1 and gcd(q, b) = 1.
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q | a2n + b2
n

q | a2n
[
1 +

(
b · a−1

)2n]
q |
(
b · a−1

)2n
+ 1

q |
(
b · a−1

)2n+1

− 1

Let z ≡ b · a−1 (mod q). Therefore ordq (z) | 2n+1. However since q is odd we
have q - z2n − 1 therefore

ordq (z) = 2n+1 | q − 1

Example 2.5.10 (Bulgaria 1996). Find all pairs of prime p, q such that pq |
(5p − 2p) (5q − 2q).

Solution. We must either have p | 5p − 2p or p | 5q − 2q. Assume p | 5p − 2p. By
Fermat’s Little Theorem we arrive at

5p − 2p ≡ 3 ≡ 0 (mod p) =⇒ p = 3

We must either have q | (53 − 23) = 117 or q | (5q − 2q). By the same method,
the second one produces q = 3 while the first renders q = 13. Using symettry we
arrive at the solutions (p, q) = (3, 3), (3, 13), (13, 3). Assume that p, q 6= 3 now.

We must have p | 5q − 2q and q | 5p − 2p then.

5q − 2q ≡ 0 (mod p)

2q
[(

5 · 2−1
)q − 1

]
≡ 0 (mod p)(

5 · 2−1
)q − 1 ≡ 0 (mod p)

Using this same logic we arrive at(
5 · 2−1

)p − 1 ≡ 0 (mod q)

Let a ≡ 5 · 2−1 (mod pq). We therefore have{
ordp(a) | q
ordq(a) | p

=⇒

{
ordp(a) ∈ {1, q} | φ(p)

ordq(a) ∈ {1, p} | φ(q)
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If ordp(a) = q and ordq(a) = p then by Theorem 8 we would have{
q | p− 1

p | q − 1
=⇒

{
p ≥ q + 1

q ≥ p+ 1

absurd. Therefore assume WLOG that ordp(a) = 1 therefore a− 1 ≡ 0 (mod p).
Since a ≡ 5 · 2−1 (mod p) we have

2 (a− 1) ≡ (2) (5)
(
2−1
)
− 2 ≡ 3 ≡ 0 (mod p)

contradicting p, q 6= 3.

The solutions are hence (p, q) = (3, 3), (3, 13), (13, 3) .

Example 2.5.11 (USA TST 2003). Find all ordered prime triples (p, q, r)
such that p | qr + 1, q | rp + 1, and r | pq + 1.

Solution. We split this up into two cases.
Case 1: Assume that p, q, r 6= 2. We therefore have p - qr − 1 and similarly.

Therefore we have
p | q2r − 1

q | r2p − 1

r | p2q − 1

=⇒


ordp (q) ∈ {1, 2, 2r} | p− 1

ordq (r) ∈ {1, 2, 2p} | q − 1

ordr (p) ∈ {1, 2, 2q} | r − 1

because ordp (q) | 2r and ordp (q) 6= r and similarly.
Assume that ordp(q), ordq(r), ordr(p) ∈ {1, 2}. ordp(q) = 1 implies q ≡ 1

(mod p) and ordp(q) = 2 implies q2 ≡ 1 (mod p) =⇒ q ≡ −1 (mod p). There-
fore we arrive at 

q ≡ ±1 (mod p)

r ≡ ±1 (mod q)

p ≡ ±1 (mod r)

=⇒


q ± 1 ≥ 2p

r ± 1 ≥ 2q

p± 1 ≥ 2r

since q± 1 6= p from them all being odd. This inequality set is clearly impossible.
Therefore WLOG we set ordp(q) = 2r. We must have 2r | p− 1 (Theorem 8)

but since p and r are odd this reduces down to r | p− 1. However r | pq + 1 but
pq + 1 ≡ 2 6= 0 (mod r) contradiction.

Case 2: We conclude there are no solutions when p, q, r 6= 2. Therefore
WLOG let p = 2. From p | qr + 1 we arrive at q ≡ 1 (mod 2). Also r is odd since
r | 2q + 1. Therefore we have r - 2pq − 1 and q - r2 − 1.{

q | r4 − 1

r | 22q − 1
=⇒

{
ordq(r) ∈ {1, 4} | q − 1

ordr(2) ∈ {1, 2, 2q} | r − 1
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If ordr(2) = 1 then we have 2 ≡ 1 (mod r) absurd. If ordr(2) = 2 then we have
22 ≡ 1 (mod r) or r = 3. We must have q | 34 − 1 = 80. Since q 6= 2, we check if
q = 5 satisfies the equation. (p, q, r) = (2, 5, 3) gives us 2 | 53+1, 5 | 32+1, 3 | 25+1
which are all true. We arrive at the solutions (p, q, r) = (2, 5, 3), (3, 2, 5), (5, 3, 2).

Now we must have ordr(2) = 2q. By theorem 8 we have 2q | r − 1. Therefore
since q 6= 2 we have r ≡ 1 (mod q). However q | rp + 1 but rp + 1 ≡ 2 6= 0
(mod q).

In conclusion our solutions are (p, q, r) = (2, 5, 3), (3, 2, 5), (5, 3, 2) .

Example 2.5.12. Prove that for n > 1 we have n - 2n−1 + 1.

Proof. Let p | n. We arrive at{
p | 2p−1 − 1

p | 22n−2 − 1
=⇒ p | 2gcd(p−1,2n−2) − 1

We must have v2(p− 1) ≥ v2(2n− 2) since n | 2n−1 + 1 and p 6= 2.. Let n− 1 =
2v2(n−1)m. We arrive at

p− 1 ≡ 0 (mod 2v2(n−1)+1) =⇒ n ≡
∏

p ≡ 1 (mod 2v2(n−1)+1)

However this implies v2(n− 1) ≥ v2(n− 1) + 1 clearly absurd.

Example 2.5.13. (China 2009) Find all pairs of primes p, q such that

pq | 5p + 5q

.

Solution. We divide this solution into two main cases.
Case 1: p = q
In this case we must have

p2 | 2 · 5p =⇒ p = q = 5

Case 2: p 6= q. When q = 5 we arrive at p | 5p + 55 or therefore

5p + 55 ≡ 5 + 55 ≡ 0 (mod p) =⇒ p = 2, 5, 313
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Hence we arrive at (p, q) = (5, 2), (5, 313), (2, 5), (313, 5). Assume p, q 6= 5. We
now have

5p + 5q ≡ 5 + 5q ≡ 0 (mod p) =⇒ 5q−1 + 1 ≡ 0 (mod p)

1 + 5p−1 ≡ 0 (mod q)

=⇒ 52q−2 ≡ 1 (mod p) and 52p−2 ≡ 1 (mod q)

=⇒ ordp(5) | gcd(2q − 2, p− 1) and ordq(5) | gcd(2p− 2, q − 1)

So long as p, q 6= 2 we arrive at

v2 (ordp5) = v2(2q − 2) ≤ v2(p− 1) and v2 (ordq5) = v2(2p− 2) ≤ v2(q − 1)

Since 5q−1 6= 1 (mod p) and 5p−1 6= 1 (mod q). The two equations above are
clearly a contradiction. Therefore p or q is 2. Let p = 2 for convenience. We then
must have

52 + 5q ≡ 52 + 5 ≡ 0 (mod q) =⇒ q = 2, 3, 5

We however know that p 6= q therefore we rule out that solution. The solutions
are hence (p, q) = (2, 3), (2, 5), (3, 2), (5, 2).

In conclusion the solutions are

(p, q) = (2, 3), (2, 5), (3, 2), (5, 2), (5, 5), (5, 313), (313, 5) .
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p-adic Valuation

3.1 Definition and Basic Theorems

Important: Unless otherwise stated p is assumed to be a prime.

Definition 3.1.1. We define the p-adic valuation of m to be the highest power
of p that divides m. The notation for this is vp(m).

Example. Since 20 = 22 · 5 we have v2(20) = 2 and v5(20) = 1. Since 360 =
23 · 32 · 51 we have v2 (120) = 3, v3 (360) = 2, v5 (360) = 1. m can be a fraction, in
this case we have vp

(
a
b

)
= vp (a)− vp (b).

Theorem 3.1.1. vp (ab) = vp (a) + vp (b).

Proof. Set vp (a) = e1 and vp (b) = e2. Therefore a = pe1a1 and b = pe2b1 where
a1 and b1 are relatively prime to p. We then get

ab = pe1+e2a1b1 =⇒ vp (ab) = e1 + e2 = vp (a) + vp (b)

Theorem 3.1.2. If vp (a) > vp (b) then vp (a+ b) = vp (b).

Proof. Again write vp (a) = e1 and vp (b) = e2. We therefore have a = pe1a1 and
b = pe2b1. Notice that

a+ b = pe1a1 + pe2b1 = (pe2)
(
pe1−e2a1 + b2

)
Since e1 ≥ e2 + 1 we have pe1−e2a1 + b2 ≡ b2 6= 0 (mod p) therefore vp (a+ b) =
e2 = b as desired.

69
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At this point the reader is likely pondering “these seem interesting but I do
not see use for them”. Hopefully the next example proves otherwise (we’ve split
it into two parts).

Example 3.1.1. Prove that
n∑
i=1

1

i
is not an integer for n ≥ 2.

Solution. The key idea for the problems is to find a prime that divides into the
denominator more than in the numerator.

Notice that
n∑
i=1

1

i
=

n∑
i=1

n!
i

n!

We consider v2

(
n∑
i=1

n!

i

)
. From 3.1.2 we get

v2

(
n!

2i− 1
+
n!

2i

)
= v2

(
n!

2i

)

We then get v2

(
n!

4i− 2
+
n!

4i

)
= v2

(
n!

4i

)
and repeating to sum up the facto-

rial in this way we arrive at

v2

(
n∑
i=1

n!

i

)
= v2

(
n!

2blog2 nc

)

However for
n∑
i=1

(
1

i

)
to be an integer we need

v2

(
n∑
i=1

n!

i

)
≥ v2 (n!)

v2

(
n!

2blog2 nc

)
≥ v2 (n!)

0 ≥ blog2 nc,

which is a contradiction since n ≥ 2.
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Example 3.1.2. Prove that
n∑
i=0

1

2i+ 1
is not an integer for n ≥ 1.

Solution.

Definition 3.1.2. We define (2i+ 1)!! to be the product of all odd numbers less
than or equal to 2i+1. Therefore (2i+ 1)!! = (2i+ 1) (2i− 1) · · · 3·1. For example
(5)!! = 5 · 3 · 1 = 15.

Similarly to what was done in the previous problem, we can rewrite the sum-
mation as

n∑
i=0

1

2i+ 1
=

n∑
i=0

(2n+1)!!
2i+1

(2n+ 1)!!
.

Notice that

v3

(
(2n+ 1)!!

3i− 2
+

(2n+ 1)!!

3i
+

(2n+ 1)!!

3i+ 2

)
= v3

(
(2n+ 1)!!

3i

)
.

Since v3

(
(2n+ 1)!!

3i− 2
+

(2n+ 1)!!

3i+ 2

)
> v3

(
(2n+ 1)!!

3i

)
. Repeating to sum all

terms up in groups of three as this, we arrive at

v3

(
n∑
i=0

(2n+ 1)!!

2i+ 1

)
≥ v3

(
(2n+ 1)!!

3blog3(2n+1)c

)
.

However we must have

v3

(
(2n+ 1)!!

3blog3(2n+1)c

)
≥ v3 [(2n+ 1)!!]

0 ≥ blog3(2n+ 1)c

which is a contradiction since n ≥ 1.

Example 3.1.3 (ISL 2007 N2). Let b, n > 1 be integers. For all k > 1, there
exists an integer ak so that k | (b − ank). Prove that b = mn for some integer
m.

Solution. Assume to the contrary and that there exists a prime p that divides
into b such that vp (b) 6≡ 0 (mod n). Therefore we set

b = pe1n+f1b1, 1 ≤ f1 ≤ n− 1

where gcd(b1, p) = 1 and p is a prime. Now let k = pn(e1+1). We must have
vp(b− ank) ≥ vp(k) = n(e1 + 1).
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• If vp (ak) ≤ e1 then we have

vp(b) > vp(a
n
k) =⇒ vp(b− ank) = vp(a

n
k) ≤ ne1

contradiction!

• If vp (ak) ≥ e1 + 1 then we have

vp(a
n
k) > vp(b) =⇒ vp(b− ank) = vp(b) < n(e1 + 1)

contradiction!

Both cases lead to a contradiction, therefore f1 ≡ 0 (mod n) and we have
b = mn.

3.2 p-adic Valuation of Factorials

Factorials are special cases that really lend themselves to p-adic valuations, as the
following examples show.

Example. Find v3 (17!).

Solution. We consider the set {1, 2, · · · , 17}. We count 1 power of 3 for each
element with vp(x) = 1 and we count two powers of 3 for each element with
vp(x) = 2.

• We begin by counting how many numbers have at least one power of 3 which
is simply b17

3
c.

• We have already accounted for the numbers with two powers of 3, however
they must be counted twice so we add b17

9
c to account for them the second

time.

Our answer is hence b17
3
c+ b17

9
c = 6 .

Theorem 3.2.1 (Legendre). For all positive integers n and positive primes
p, we have

vp(n!) =
∞∑
i=1

⌊
n

pi

⌋
.

Outline. We consider the power of p that divides into n!.
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• The number of occurences that the factor p1 occurs in the set {1, 2, · · · , n}.
We notice that it occurs bn

p
c times.

• The number of occurences that the factor p2 occur in the set {1, 2, · · · , n}
is going to be b n

p2
c. We have added these once already when we added bn

p
c,

but since we need this to be added 2 times (since it is p2), we add b n
p2
c once.

Repeating this process as many times as necessary gives the desired vp(n!) =
∞∑
i=1

⌊
n

pi

⌋
.

Theorem 3.2.2 (Legendre). For all positive integers n and positive primes
p, we have

vp(n!) =
n− sp(n)

p− 1

where sp(n) denotes the sum of the digits of n in base p.

Proof. In base n write

n =
k∑
i=0

(
ai · pi

)
p− 1 ≥ ak ≥ 1 and p− 1 ≥ ai ≥ 0 for 0 ≤ i ≤ k − 1

From 3.2.1 we arrive at

vp (n!) =
∞∑
i=1

⌊
n

pi

⌋
=

k∑
j=1

aj
(
pj−1 + pj−2 + · · ·+ 1

)
=

k∑
j=1

aj

(
pj − 1

p− 1

)

where our steps were motivated by examining
∞∑
i=1

⌊
ajp

j

pi

⌋
. 1

1To make this more rigorous we would use the double summation notation. I avoided this
notation to make the proof more easier to follow.
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Now we evaluate
n− sp(n)

p− 1
. We notice that sp(n) =

k∑
i=0

ai, which implies that

n− sp(n)

p− 1
=

1

p− 1

[
k∑
i=0

(
ai · pi

)
−

k∑
i=0

(ai)

]

=
1

p− 1

k∑
i=0

[
ai
(
pi − 1

)]
.

Therefore vp (n!) =
n− sp(n)

p− 1
as desired.

Example 3.2.1 (Canada). Find all positive integers n such that 2n−1 | n!.

Solution. From 3.2.2 we have

v2 (n!) = n− s2 (n) ≥ n− 1 =⇒ 1 ≥ s2 (n)

This happens only when n is a power of 2.

Example 3.2.2. Find all positive integers n such that n | (n− 1)!.

Solution. Set n = pe11 p
e2
2 · · · p

ek
k be the prime factorization of n. If k ≥ 2 then write

n = (pe11 ) (pe22 · · · p
ek
k ). From Chinese Remainder Theorem we must prove that

(pe11 ) | (n− 1)! and (pe22 · · · p
ek
k ) | (n− 1)!

However since n− 1 > pe11 and n− 1 > pe22 · · · p
ek
k this is true.

Therefore we now consider k = 1 or n = pe11 . Using Legendre’s formula we
have

vp1 (pe11 − 1)! =
∞∑
i=1

⌊
pe11 − 1

pi1

⌋
≥ e1.

For e1 = 1 this statement is obviously false (which correlates to n being prime).
For e1 = 2 we must have⌊

p21 − 1

p1

⌋
≥ e1 =⇒ p1 − 1 ≥ e1
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Therefore since e1 = 2 we have p1 = 2 giving the only counterexample (which
correlates to n = 4). Now for e1 ≥ 3 we have

∞∑
i=1

⌊
pe11 − 1

pi1

⌋
≥ pe1−11 − 1 ≥ 2e1−1 − 1 ≥ e1.

Therefore the anwer is all composite n not equal to 4 .

Example 3.2.3. Prove that for any positive integer n, the quantity 1
n+1

(
2n
n

)
is an integer. Do not use binomial identities.

Solution. For n + 1 = p prime the problem claim is true by looking at the sets
{n+ 1, n+ 2, · · · , 2n} and {1, 2, · · · , n} and noticing that factors of p only occur
in the first set. Otherwise let p be a prime divisor of n + 1 less than n + 1. We
must prove that

vp

[(
2n

n

)]
≥ vp (n+ 1)

Let vp (n+ 1) = k. Therefore write n + 1 = pkn1 where gcd(n1, p) = 1. By
Legendre’s we have

vp

[(
2n

n

)]
=
∞∑
i=1

⌊
2n

pi

⌋
− 2

∞∑
i=1

⌊
n

pi

⌋
.

Lemma. When n+ 1 = pkn1 and k ≥ m we have⌊
2n

pm

⌋
− 2

⌊
n

pm

⌋
= 1.

Proof. We notice that 2n = 2n1p
k − 2. Therefore for p 6= 2 we have⌊

2n

pm

⌋
= 2n1p

k−m − 1 and 2

⌊
n

pm

⌋
= 2

(
pk−mn1 − 1

)
For p = 2, we arrive at the same formula unless m = 1, which then gives⌊

2n

2

⌋
= 2kn1 − 1 and

⌊n
2

⌋
= 2k−1n1 − 1.

The calculations in both cases are left to the reader to verify (simple exercise).
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Therefore using our lemma we have

vp

[(
2n

n

)]
≥ k,

which is what we wanted.

Example 3.2.4 (Putnam 2003). Show that for each positive integer n,

n! =
n∏
i=1

lcm
{

1, 2, . . . ,
⌊n
i

⌋}
(Here lcm denotes the least common multiple, and bxc denotes the greatest
integer ≤ x.)

Solution. If we have vp(a) = vp(b) for all primes p then in conclusion we would have
a = b since the prime factorizations would be the same. Assume that for this case

p ≤ n because otherwise it is clear that vp(n!) = vp

(
n∏
i=1

lcm
{

1, 2, . . . ,
⌊n
i

⌋})
=

0

By theorem 7 we have vp(n!) =
∞∑
i=1

(
n

pi

)
. I claim that this is the same as

vp

(
n∏
i=1

lcm
{

1, 2, . . . ,
⌊n
i

⌋})
.

• When i ∈ {1, 2, · · · , bn
p
c} we have at least one power of p in lcm {1, 2, . . . ,

⌊
n
i

⌋
}.

Therefore we add bn
p
c.

• When i ∈ {1, 2, · · · , b n
p2
c} we have at least two powers of p in lcm {1, 2, . . . ,

⌊
n
i

⌋
}.

However, since we need to count the power of p2 a total of 2 times and it
has already been counted once, we just add it once.

Repeating this process we arrive at vp

(
n∏
i=1

lcm
{

1, 2, . . . ,
⌊n
i

⌋})
=
∞∑
i=1

⌊
n

pi

⌋
as desired.
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Example 3.2.5. Prove that for all positive integers n, n! divides

n−1∏
k=0

(2n − 2k).

Solution. Notice that

n−1∏
k=0

(2n − 2k) =
n−1∏
k=0

2k
(
2n−k − 1

)
= 21+2+···+n−1

n−1∏
k=1

(2k − 1).

The number of occurences of 2 in the prime factorization of n! is quite obviously

more in
n−1∏
k=1

(2n − 2k) then in n! using the theorem 7. Therefore we consider all

odd primes p and look at how many times it divides into both expressions.

Lemma.

vp

(
n−1∏
k=1

(2k − 1)

)
≥

∞∑
i=0

⌊
n− 1

(p− 1)pi

⌋
=
∞∑
i=1

⌊
n− 1

(p− 1)pi−1

⌋
.

Outline. We consider the set {21−1, 22−1, · · · , 2n−1−1} and consider how many
times the exponent pi divides into each term. We consider the worst case scenario
situation when the smallest value of x such that 2x ≡ 1 (mod pj) is x = φ(pj) via
Euler’s Totient.

• When p1 divides into members of this set, we have

p|(2k − 1) =⇒ k ≡ 0 (mod p− 1).

This results in giving us a total of bn−1
p−1 c solutions.

• When p2 divides into members of this set, we have

p2|(2k − 1) =⇒ k ≡ 0 (mod p(p− 1)).

We only account for this once using similar logic as to the proof of Legendre’s
theorem therefore we add this a total of b n−1

p(p−1)c times.
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Repeating this process in general gives us⌊
n− 1

φ(pj)

⌋
=

⌊
n− 1

(p− 1)pj−1

⌋
and keeping in mind that it is a lower bound, we have proven the lemma.

We desire to have vp

(
n−1∏
k=1

(2k − 1)

)
≥ vp(n!) which would in turn give us n!

divides
n−1∏
k=1

(2k − 1). Quite obviously n ≥ p or else vp(n!) = 0 and there is nothing

to consider. Because of this,

n− 1

p− 1
≥ n

p
=⇒ n− 1

(p− 1)pi−1
≥ n

pi
.

Therefore, we arrive at

∞∑
i=1

⌊
n− 1

(p− 1)pi−1

⌋
≥

∞∑
i=1

⌊
n

pi

⌋
.

As a result,

vp

[
n−1∏
k=1

(2k − 1)

]
≥ vp(n!)

and we are done.

Motivation. The motivation behind the solution was looking at small cases. We
take out the factors of 2 because we believe that there are more in the product
we are interested in then in n!. For n = 3 we want 3 | (23 − 1) (22 − 1) (2− 1).
Obviously 3 | (22 − 1).

Similarly, for n = 5 we want (5× 3) | (25 − 1) (24 − 1) (23 − 1) (22 − 1) (21 − 1).
Notice that 5| (24 − 1) and 3| (22 − 1).

At this point the motivation to use Fermat’s Little Theorem to find which
terms are divisible by p hit me. From here, the idea to use Legendre’s formula
and Euler’s Totient for pk hit me and the rest was groundwork.
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3.2.1 Problems

3.1. (1968 IMO 6) For every natural number n, evaluate the sum

∞∑
k=0

bn+ 2k

2k+1
c = bn+ 1

2
c+ b[n+ 2

4
c] + · · ·+ b[n+ 2k

2k+1
c] + · · ·

3.2. (1975 USAMO 1) Prove that

(5m)!(5n)!

m!n!(3m+ n)!(3n+m)!

is integral for all positive integral m and n.

3.3 Lifting the Exponent

Theorem 3.3.1. For p being an odd prime relatively prime to integers a and
b with p | a− b then

vp (an − bn) = vp (a− b) + vp (n) .

Proof. ([?])
We use induction on vp (n).
Base case: We begin with the base case of vp (n) = 0. We have

vp (an − bn) = vp (a− b) + vp
(
an−1 + an−2 · b+ · · ·+ bn−1

)
Now notice that

an−1 + an−2 · b+ · · ·+ bn−1 ≡ n · an−1 (mod p)

from a ≡ b (mod p) therefore since gcd(a, p) = 1 we have

vp (an − bn) = vp (a− b)

as desired.
Second base case: It is not necessary to do two base cases, however it will

help us down the road so we do it here. We prove that when vp (n) = 1 we have
vp (an − bn) = vp (n) + vp (a− b). Let n = pn1 where gcd(n1, p) = 1. We arrive at

vp (apn1 − bpn1) = vp [(ap)n1 − (bp)n1 ] = vp (ap − bp)
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Now let a = b+ kp since we know p | a− b. We arrive at

(b+ kp)p − bp =

(
p

1

)
(kp) +

(
p

2

)
(kp)2 + · · ·+

(
p

p

)
(kp)p

Using the fact that p |
(
p
i

)
for all 1 ≤ i ≤ p− 1 we arrive at

vp [(b+ kp)p − bp] = vp

((
p

1

)
p

)
+ vp (k) = 2 + vp(a− b)− 1

as desired.
Inductive hypothesis: Assume the statement holds for vp (n) = k and I

prove it holds for vp (n) = k + 1. Set n = pk+1n1. Then we have

vp

[(
ap

k
)pn1

−
(
bp

k
)pn1

]
= vp

(
ap

k − bpk
)

+ 1 = vp (a− b) + k + 1

Via our second base case and inductive hypothesis.

Corollary 3.3.1. For p being an odd prime relatively prime to a and b with
p | a− b and n is a odd positive integer than

vp (an + bn) = vp (a+ b) + vp (n)

.

Theorem 3.3.2. If p = 2 and n is even, and

• 4 | x− y then v2(x
n − yn) = v2(x− y) + v2(n)

• 4 | x+ y then v2(x
n − yn) = v2(x+ y) + v2(n)

Proof. This is left to the reader, advising that they follow along the same lines as
the above proof.

Example 3.3.1 (AoPS). Let p > 2013 be a prime. Also, let a and b be
positive integers such that p|(a + b) but p2 - (a + b). If p2|(a2013 + b2013) then
find the number of positive integer n ≤ 2013 such that pn|(a2013 + b2013)
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Solution. The first condition is equivalent to vp (a+ b) = 1. We also must have
vp (a2013 + b2013) ≥ 2. However if p - a, b then we have

vp
(
a2013 + b2013

)
= vp (a+ b) + vp (2013) = 1→←

Therefore p | a, b which in turn gives p2013 | a2013 + b2013. Therefore the answer is
all positive integers n less than or equal to 2013 or 2013 .

Example 3.3.2 (AMM). Let a, b, c be positive integers such that c | ac − bc.
Prove that c | ac−bc

a−b .

Solution. Let
p | c, vp(c) = x

If p - a− b then we obviously have

px | a
c − bc

a− b

Therefore consider p | a− b. Using lifting the exponent so long as p 6= 2, we arrive
at

vp

(
ac − bc

a− b

)
= vp(a− b) + vp(c)− vp(a+ b) = x

When p = 2 we arrive at

v2

(
ac − bc

a− b

)
= v2(a− b) + v2(a+ b) + v2(c)− 1− v2(a− b) ≥ v2(c)

Example 3.3.3 (IMO 1999). Find all pairs of positive integers (x, p) such
that p is prime, x ≤ 2p, and xp−1 | (p− 1)x + 1.

Solution. Assume that p 6= 2 for the time being (we will see why later). We
trivially have x = 1 always giving a solution. Now, let q be the minimal prime
divisor of x. We notice that:

q |
[
(p− 1)2

]x − 1

=⇒ ordq
[
(p− 1)2

]
| gcd(x, q − 1) = 1

=⇒ (p− 1)2 − 1 ≡ 0 (mod q)

=⇒ (p− 2) (p) ≡ 0 (mod q)
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We know that (p− 1)x + 1 ≡ 0 (mod q). However, if p− 2 ≡ 0 (mod q) then we
have

(p− 1)x + 1 ≡ 2 6= 0 (mod q)

Since p − 1 is odd. Therefore we must have p ≡ 0 (mod q) or therefore p = q.
Now, by lifting the exponent 2 we have:

vp [(p− 1)x + 1] = 1 + vp (x) ≥ p− 1

x ≥ pp−2 ≥ 2p for p > 3

However we have x ≤ 2p. We now account for p ∈ {2, 3}.
p = 2 gives x | 2 or x = 1, 2. p = 3 gives x2 | 2x + 1 where x ≤ 6. Therefore

we have x = 1, 3. The solutions are hence (x, p) = (1, p), (2, 2), (3, 3).

Example 3.3.4 (Bulgaria). For some positive integers n, the number 3n−2n

is a perfect power of a prime. Prove that n is a prime.

Solution. Say n = p1p2 · · · pk where p1 ≤ p2 ≤ · · · ≤ pk and k ≥ 2.
We have 3pi − 2pi | 3n − 2n. Let p | 3pi − 2pi for all pi. We have p | zpi − 1

where z ≡ 3 · 2−1 (mod p) since p 6= 2. Therefore

ordp(z) | pi =⇒ ordp(z) | gcd(p1, p2, · · · , pi)

However gcd(p1, p2, · · · , pi) ∈ {1, pi} with it being pi when p1 = p2 = · · · = pk.
But if gcd(p1, p2, · · · , pi) = 1 then we have p | z − 1. However

2(z − 1) ≡ 1 ≡ 0 (mod p)→←

Therefore p1 = p2 = · · · = pk. We must therefore consider n = pk.
Let 3p

k − 2p
k

= qz. Therefore 3p
k−1 − 2p

k−1
= qz1 . Therefore ordq(z) | pk−1 if

k ≥ 2. Let ordq(z) = pm. Therefore 3p
m − 2p

m ≡ 0 (mod q). Now we use lifting
the exponent to give us

vq

[(
3p

m)pk−m

−
(
2p

m)pk−m
]

= vq
(
3p

m − 2p
m)

+ vq(p)

However if q = p then we have ordp(z) | gcd(pk, p− 1) = 1 giving the same p = 1
contradiction. Therefore vq(p) = 0. Hence we must have vq

(
3p

m − 2p
m) ≥ z.

Therefore
3p

k − 2p
k

> 3p
m − 2p

m ≥ qz

since m ≤ k − 1. Therefore k = 1 implying that p is prime.

Comment. When we do Zsigmondy’s theorem you will notice there is a lot easier
solution to this.

2lifting the exponent is not the same for p = 2
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Example 3.3.5 (IMO 1990). Find all natural n such that 2n+1
n2 is an integer.

Solution. Trivially n = 1 is a solution. Now assume n 6= 1 and define π(n) to be
the smallest prime divisor of n. Let π(n) = p 6= 2. Then we have:

p | 2n + 1 | 22n − 1 and p | 2p−1 − 1

=⇒ p | 2gcd(2n,p−1) − 1

Now if r 6= 2 | n then we can’t have r | p − 1 because then r ≤ p − 1
contradiction. Therefore r = 2 and since n is odd gcd(2n, p− 1) = 2. Hence

p | 22 − 1 =⇒ p = 3

Let v3(n) = k. By lifting the exponent we must have

v3(2
n + 1) = 1 + k ≥ v3(n

2) = 2k =⇒ k = 1

Let n = 3n1. n1 = 1 is a solution (23 + 1 = 32 = 9). Assume n1 6= 1 and let
π(n1) = q 6= 3. By Chinese Remainder Theorem since q 6= 3 we have:

q | 8n1 + 1 | 82n1 − 1 and q | 8q−1 − 1

=⇒ q | 8gcd(2n1,q−1) − 1 = 63 so q = 7

However 2n + 1 ≡ 8n1 + 1 ≡ 2 (mod 7) contradiction.
The solutions are henceforth n = 1, 3.

Example 3.3.6 (China TST 2009). Let a > b > 1 be positive integers and b
be an odd number, let n be a positive integer. If bn | an−1 prove that ab > 3n

n
.

Solution. We fix b. I claim that the problem reduces down to b prime. Assume
that we have shown the problem statement for b prime (which we will do later).
Now let b be composite and say q | b where q is prime. Then we would have
qn | bn | an− 1. However, by our assumption qn | an− 1 gives us aq > 3n

n
therefore

we have ab > aq > 3n

n
. Therefore the problem reduces down to b prime. Let b = p

be prime.
We have pn | an − 1. Since p | an − 1 we have ordpa | n. Also by Fermat’s

Little Theorem we have ordpa | p− 1. Let

ordpa = x ≤ p− 1

We now have ax ≡ 1 (mod p). Therefore x | n and set n = xn1.
Now we must have pn | (ax)n1 − 1. By lifting the exponent we have

vp [(ax)n1 − 1] = vp(a
x − 1) + vp(n1) ≥ n
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Lemma. logp n ≥ vp(n)

Proof. Let n = prs. Therefore vp(n) = r. We also have logp n = r+logp s ≥ r.

Therefore we now have

vp(a
x − 1) ≥ n− vp(n1) ≥ n− logp n1

vp(a
x − 1) ≥ logp

(
pn

n1

)
ab > ax − 1 ≥ pvp(a

x−1) ≥ pn

n1

=
x · pn

n
≥ 3n

n

We use the fact that p is odd in the last step since we have pn ≥ 3n.

3.4 General Problems for the Reader

3.3. [Turkey] Let bm be numbers of factors 2 of the number m! (that is, 2bm |m!
and 2bm+1 - m!). Find the least m such that m− bm = 1990.
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Diophantine equations

4.1 Bounding

Example 4.1.1. (Russia) Find all natural pairs of integers (x, y) such that
x3 − y3 = xy + 61.

Solution.
x3 − y3 = (x− y)

(
x2 + xy + y2

)
= xy + 61

Notice that x > y. Therefore we have to consider x2 + xy + y2 ≤ xy + 61 or
x2 + y2 ≤ 61. Since x > y, we have

61 ≥ x2 + y2 ≥ 2y2 =⇒ y ∈ {1, 2, 3, 4, 5}

y = 1 x3 − x− 62 = 0

y = 2 x3 − 2x− 69

y = 3 x3 − 3x− 89

y = 4 x3 − 4x− 125

y = 5 x3 − 5x− 186 = 0

Of these equations, we see the only working value for x is when x = 6, y = 5 so
the only natural pair of solutions is (x, y) = (6, 5).

4.2 The Modular Contradiction Method

85
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Example 4.2.1. Find all pairs of integers (x, y) that satisfy the equation

x2 − y! = 2001.

Solution. We consider what happens modulo 7. When y ≥ 7, y! ≡ 0 (mod 7), so
x2 ≡ 2001 ≡ −1 (mod 7). Therefore if an x is to satisfy this equation, x2 ≡ 6
(mod 7). But by analyzing the table shown below, we can see that there are no
solutions to that equation.

x x2 (mod 7)
0 0
1 1
2 4
3 2
4 2
5 4
6 1

Therefore y < 7.
Now we must check cases. Note that the smallest perfect square greater than

2001 is 2025 = 452, and this (surprisingly) gives two valid solutions: (x, y) =
(45, 4) and (x, y) = (−45, 4). This covers all cases with y ≤ 4. If y = 5, then
x2 = 2001 + 5! = 2121, but this equation has no integer solutions since 2121 is
divisible by 3 but not 9. If y = 6, then x2 = 2001 + 6! = 2721, which once again
has no solutions for the same reasons as above. Therefore our only solutions are

(x, y) = (45, 4), (−45, 4) .

Tip 4.2.1. When dealing with factorials, it is often advantageous to take advan-
tage of the fact that m! ≡ 0 (mod p) for all positive integers m ≥ p. By finding
the right mod, we can reduce the number of cases significantly.

Example 4.2.2 (USAMTS). Prove that if m and n are natural numbers that

3m + 3n + 1

cannot be a perfect square.

Solution. We look mod 8. Notice that we have

32k ≡ 1 (mod 8) and 32k+1 ≡ 3 (mod 8)
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Therefore we have 3m ≡ {1, 3} (mod 8). Henceforth the possible values of
3m + 3n + 1 mod 8 are 1 + 1 + 1, 3 + 1 + 1, 3 + 3 + 1 which gives 3, 5, 7.

Notice that when x is even we have x2 ≡ 0, 4 (mod 8). When x = 2k + 1
we get x2 = 4k2 + 4k + 1 ≡ 1 (mod 8) since k2 + k ≡ 0 (mod 2). Therefore
the possible values of x2 (mod 8) are 0, 1, 4. None of these match the values of
3m + 3n + 1 (mod 8) therefore we have a contradiction.

Motivation. The motivation for looking mod 8 stems from trying mod 4 at first.
Trying mod 4 eliminates the case m and n are both even (since then 3m+3n+1 ≡ 3
(mod 4)) and the case when m and n are both odd (since then 3m+3n+1 ≡ 7 ≡ 3
(mod 4)). Since we notice how close this gets us, we try mod 8.

Example 4.2.3. Prove that 1919 cannot be written as the sum of a perfect
cube and a perfect fourth power.

Solution. We look (mod 13). Notice that when gcd(x, 13) = 1 we have(
x3
)4 ≡ 1 (mod 13)

hence substituting y ≡ x3 (mod 13) we arrive at y4 ≡ 1 (mod 13). The solu-
tions to this equation are y ≡ 1, 5, 8, 12 (mod 13). Therefore x3 ≡ 0, 1, 5, 8, 12
(mod 13).

Next when gcd(x, 13) = 1 we have(
x4
)3 ≡ 1 (mod 13)

therefore substituting x4 ≡ y (mod 13) gives us the equation y3 ≡ 1 (mod 13).
The solutions to this are y ≡ 1, 3, 9 henceforth x4 ≡ 0, 1, 3, 9 (mod 13).

Lastly, notice that

1919 ≡
(
612
) (

67
)
≡
(
62
)3

(6) ≡ (−3)3 (6) ≡ 7 (mod 13)

x3 (mod 13) y4 (mod 13)
0 0
1 1
5 3
8 9
12

It is clear that the sum of no two elements above will be 7 (mod 13) therefore
we are done.
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Tip 4.2.2. When a problem says to prove a diophantine equation has no solutions
it usually has a modular solution. Finding the right mod is quite an important
trick. Find the modulo which reduces the cases to as small as possible and this
will likely be the right mod to work with. If not, try many different mods and see
which ones work.

Example 4.2.4. Find all solutions to the equation x5 = y2 + 4 in positive
integers.

Solution. We look (mod 11). The motivation behind this is noting that when
gcd(x, 11) = 1 we have x10 ≡ 1 (mod 11).

Notice that when gcd(x, 11) = 1 we have(
x5
)2 ≡ 1 (mod 11).

Therefore substituting y ≡ x5 (mod 11) we arrive at y2 ≡ 1 (mod 11) or y ≡ ±1
(mod 11) therefore x5 ≡ 0, 1, 10 (mod 11).

The possible squares mod 11 are 02 ≡ 0 (mod 11), 12 ≡ 1 (mod 11), 22 ≡ 4
(mod 11), 32 ≡ 9 (mod 11), 42 ≡ 5 (mod 11), 52 ≡ 3 (mod 11) since x2 ≡ (11 −
x)2 (mod 11). Therefore x2 ≡ 0, 1, 3, 4, 5, 9 (mod 11).

Henceforth we have:

x5 (mod 11) y2 (mod 11)
0 0
1 1
10 3

4
5
9

Therefore x5 − y2 ≡ 4 (mod 11) is impossible and we have concluded that
there are no solutions.

Example 4.2.5 (USAJMO 2013). Are there integers a, b such that a5b + 3
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and ab5 + 3 are perfect cubes?

Solution. The cubic residues mod 9 are −1, 0, 1. Therefore we think to take mod
9. Assume that we can find a, b such that a5b + 3 and ab5 + 3 are perfect cubes.
Therefore we must have{

a5b+ 3 ≡ −1, 0, 1 (mod 9)

ab5 + 3 ≡ −1, 0, 1 (mod 9)
=⇒

{
a5b ≡ 5, 6, 7 (mod 9)

ab5 ≡ 5, 6, 7 (mod 9)

If 3 | a we would have a5b ≡ 0 (mod 9) so hence gcd(a, 3) = 1 and similarly
gcd(b, 3) = 1. We notice that via Euler’s Totient Theorem

x6 ≡ 0, 1 (mod 9)

Therefore we must have a5b and ab5 to multiply to either 0 or 1 when reduced
mod 9. However, 5 · 5 ≡ 7 (mod 9), 5 · 7 ≡ 8 (mod 9), 7 · 7 ≡ 4 (mod 9) therefore
we have arrived at a contradiction.

It is therefore impossibile to find a, b such that a5b+ 3 and ab5 + 3 are perfect
cubes.

Motivation. The motivation behind this solution was to limit the values on the
possibilities for a5b+3 and ab5 +3 mod 9. The other key idea was that via Euler’s
Totient φ(9) = 6 therefore (a5b) (ab5) ≡ 0, 1 (mod 9).

Example 4.2.6. Find all solutions to the diophantine equation 7x = 3y + 4
in positive integers (India)

Solution.

Lemma. ord3n (7) = 3n−1

Sketch. First off notice that ord3n (11) = 3i (prove it!) Via lifting the exponent
we have

v3

(
73i − 1

)
= i+ 1 ≥ n

We note that (x, y) = (1, 1) is a solution and there is no solution for y = 2.
Now assume y ≥ 3. Therefore we have

7x ≡ 4 (mod 9) =⇒ x ≡ 2 (mod 3)
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I claim that x ≡ 8 (mod 9). From ord27(7) = 9 we have

7x − 4 ≡ 7x (mod 9) − 4 ≡ 0 (mod 27)

After testing x = 2, 5, 8 we arrive at x ≡ 8 (mod 9).
We wish to make 7x constant mod p. Therefore we find p such that ordp(7) = 9.

Since 79− 1 = (73 − 1) (76 + 73 + 1) and 76 + 73 + 1 = 3 · 37 · 1063 we take p = 37.
Since 37 - 73 − 1 we have ord37(7) = 9.

Take the original equation mod 7 and use ord7(3) = 6 to give y ≡ 1 (mod 6).
Therefore y is odd so we write y = 2m + 1 to give us 3y = 32m+1 = 3 · 9m. Now
ord37(9) = 9 so hence 9m ≡ 9m (mod 9) (mod 37).

We have 3y ≡ 7x − 4 ≡ 77 − 4 ≡ 12 (mod 37)

m (mod 9) 32m+1 (mod 37)
0 3
1 27
2 21
3 4
4 36
5 28
6 30
7 11
8 25

Contradicting 3y = 32m+1 ≡ 12 (mod 37).
Therefore the only solution is (x, y) = (1, 1).

Example 4.2.7. Solve the diophantine equation in positive integers: 2x+3 =
11y

Solution.

Lemma. ord2n11 = 2n−2

Sketch. We must have ord2n11 | 2n−1. From lifting the exponent v2

(
112i − 1

)
=

i+ 2 Therefore we must have i+ 2 ≥ n =⇒ i ≥ n− 2.

(x, y) = (3, 1) is a solution to this equation and x = 4 isn’t. Assume x ≥ 5
now. Take the original equation mod 16 to give us

11y ≡ 3 (mod 16)

11y ≡ 113 (mod 16)

=⇒ y ≡ 3 (mod 4)
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using the lemma.
Therefore

11y − 3 ≡ 11y (mod 8) − 3 ≡ 0 (mod 32)

From which y ≡ 7 (mod 8)
We take p = 24 + 1 = 17 since ord17 (2) = 8.
We also have ord17 (11) = 16. Take the equation mod 11 to give x ≡ 3

(mod 10) =⇒ x ≡ 1 (mod 2). 1 Notice that 11y ≡ 117, 1115 ≡ 3, 14 (mod 17).
Also

x (mod 8) 2x + 3 (mod 17)
1 5
3 11
5 1
7 12

Contradicting 2x + 3 ≡ 11y (mod 17). Therefore the only solution is (x, y) =
(3, 1).

Example 4.2.8 (USAMO 2005). Prove that the system

x6 + x3 + x3y + y = 147157

x3 + x3y + y2 + y + z9 = 157147

has no solutions in integers x, y, and z.

Solution. ([16])
We wish to limit the possibilities for z9; therefore we choose to look at the

equation (mod 19). Notice that 147 ≡ 14 (mod 19) and 157 ≡ 5 (mod 19). By
Fermat’s Little Theorem we have

147157 ≡ 14157 ≡ 1413 ≡ 2 (mod 19)2

157147 ≡ 5147 ≡ 53 ≡ 11 (mod 19)

Adding the two equations results in[
x3
(
x3 + y + 1

)
+ y
]

+
[
y
(
x3 + y + 1

)
+ x3 + z9

]
≡ [9] + [4] (mod 19)

=⇒
(
x3 + y + 1

) (
x3 + y

)
+
(
x3 + y + 1

)
− 1 + z9 ≡ 13 (mod 19)

=⇒
(
x3 + y + 1

)2
+ z9 ≡ 14 (mod 19)

1from ord11(2) = 10
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When gcd(z, 19) = 1 we have (z9)
2 ≡ 1 (mod 19) =⇒ z9 ≡ ±1 (mod 19).

Therefore z9 ≡ −1, 0, 1 (mod 19) or henceforth

(x3 + y + 1)2 ≡ 13, 14, 15 (mod 19)

By work of calculations we find that the quadratic residues mod 19 are {0, 1, 4, 5, 6, 7, 9, 11, 16, 17}
therefore we have arrived at a contradiction.

Motivation. There isn’t much motivation behind this solution. The one thing
we have to notice is that z9 is a floater and hence we likely want to limit the
possibilities for it. To do so we take mod 19.

4.3 General Problems for the Reader

4.1. [Hong Kong TST 2002] Prove that if a, b, c, d are integers such that

(3a+ 5b)(7b+ 11c)(13c+ 17d)(19d+ 23a) = 20012001

then a is even.



5

Problem Solving Strategies

In this chapter, we explore three famous theorems in Number Theory, and end
with some extremely challenging problems that highlight select problem solving
techniques.

5.1 Chicken Mcnuggets anyone?

Mcdonalds once offered Chicken Mcnuggets in sets of 9 and 20 only. A question
prompted from this is, assuming you only buy sets of 9 and 20 Chicken Mcnuggets
and do not eat/add any during this process, what is the largest amount of Mc-
nuggets that is impossible to make? It turns out the answer is 151, which we will
explore in this section.

Theorem 5.1.1 (Chicken Mcnugget Theorem). Prove that for relatively prime
naturals m,n, the largest impossible sum of m,n (i.e. largest number not ex-
pressable in the form mx+ ny for x, y non-negative integers) is mn−m− n.

Proof. (Experimenting)
First off, let’s try a small case. Let m = 7 and n = 5. We then have to

show that 5× 7− 5− 7 = 23 is impossible to make, and every value above 23 is
makable. Assume for sake of contradiction that 23 = 7x+ 5y. We then arrive at
x ∈ {0, 1, 2, 3} since when x ≥ 4 this implies that y < 0.

x = 0, 5y = 23

x = 1, 5y = 16

x = 2, 5y = 9

x = 3, 5y = 2

93
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All of these result in contradictions. Next, notice that

24 = 5× 2 + 7× 2

25 = 5× 5

26 = 5× 1 + 7× 3

27 = 5× 4 + 7× 1

28 = 7× 4

29 = 5× 3 + 7× 2

30 = 5× 6

31 = 5× 2 + 7× 3

32 = 5× 5 + 7× 1

· · ·

We notice that 29 and 24 are exactly the same, except for that the factor of 5 is
increased by 1 in 29. Similarly, the same holds for 25 to 30, and 26 to 31, and
so forth. In fact, once we have 24, 25, 26, 27, 28, the rest of the numbers above 23
are makable by just repeatedly adding 5.

OBSERVATIONS:

• WLOG let n ≥ m. Then, if we can show that mn − m − n is unmakable
and mn−m−n+ 1,mn−m−n+ 2, · · · ,mn−m−n+m, are all makable,
we can just add m repeatedly to make all numbers above mn−m− n.

• There seems to be an inequality related with mn−m− n.

Let’s take a look at our equation above to show that mn−m−n is unmakable.
We arrive at 23 = 7x + 5y. We think to check both mod 5 and mod 7 to see if
this gives us anything. Mod 5 gives us

7x ≡ 23 (mod 5) =⇒ 2x ≡ 3 (mod 5) =⇒ x ≡ −1 (mod 5)

Therefore, we arrive at x ≥ 4, contradicting x ∈ {0, 1, 2, 3}. Taking mod 7 gives
us

5y ≡ 23 ≡ −5 (mod 7) =⇒ y ≡ −1 (mod 7)

Therefore, we get y ≥ 6 again contradiction. Both of these methods give one of
the variables equal to −1 mod m or mod n. This gives us the inspiration to try
this for the general equation.

Set

mx+ ny = mn−m− n.
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Taking modm of this equation results in ny ≡ −n (mod m). Now, since gcd(n,m) =
1, we must have y ≡ −1 (mod m). Now, we try y = m− 1 to see what happens.
This gives us

mx+ n(m− 1) = mn−m− n =⇒ mx = −m

Contradicting x, y non-negative. Obviously, for y more than m− 1 the left hand
side is way bigger than the right hand side, so we have now proven that mn−m−n
is impossible.

Let’s try to construct how would we find x, y such that 24 = 7x + 5y. Notice
that taking this equation mod 7, we arrive at

5y ≡ 3 (mod 7) =⇒ y ≡ 2 (mod 7)

Therefore, set y = 2 and we arrive at x = 2 as well. Let’s try to find 26 such that
26 = 7x+ 5y. Taking this equation mod 7, we arrive at

5y ≡ 5 (mod 7) =⇒ y ≡ 1 (mod 7)

Take y = 1 and we get x = 3. It seems like modulos could do the trick for us. Set

mn−m− n+ k = mx+ ny (5.1)

Since mn−m−n is a symmetric polynomial (meaning the variables are inter-
changable), we can assume without loss or generality that n ≥ m. If instead
m ≥ n, then replace m by n to get n ≥ m (Sidenote: If m ≥ n, we would have
taken the original equation mod n.) In light of observation 1 above, we only have
to consider

k ∈ {1, 2, 3, · · · ,m} (5.2)

Now, what exactly do we have to prove?

• For every k ∈ {1, 2, 3, · · · ,m}, there exists a y such that x is an integer.

• For every k ∈ {1, 2, 3, · · · ,m}, there exists a y such that x is a non-negative
integer.

Let’s knock off the first item by using the modulo idea. Taking mod m of (1)
gives us

n(y + 1) ≡ k (mod m) =⇒ y + 1 ≡ kn−1 (mod m)

For any k, we get y ≡ kn−1 − 1 (mod m)(∗), resulting in x being an integer. We
now must prove that x is a positive integer. Notice that for We know that n−1
(mod m) exists since gcd(m,n) = 1. Now, we must prove that x is a non-negative
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integer. This is a bit harder to do, as we have no idea how to even begin. We know
that we want mn−m− n+ k − ny to be positive for every k ∈ {1, 2, 3, · · · ,m}.
For y = m− 2, we notice that we get

mn−m− n+ k − ny = n−m+ k > 01

Similarly, for y = m− y0 for m ≥ y1 ≥ 2, we get

mn−m− n−+k = (y0 − 1)n−m+ k > 0

However, for y = m − 1, we have no idea where to begin. We do notice that,
however, from (*),

y ≡ −1 (mod m) =⇒ kn−1 − 1 ≡ −1 (mod m) =⇒ k ≡ 0 (mod m)

Therefore for y = m− 1, we have k = m giving

mn−m− n+ k − ny = 0 =⇒ x = 0

Our proof is complete.

This was another awesome problem to do, as it had many key steps involved in
it.

• We first off played around with some small cases (i.e m = 5, n = 7 and
noticed that taking mod m and mod n helped solve the equation). We
also figured that inequalities would be helpful as they worked when noting
x ∈ {0, 1, 2, 3}.

• We used the ideas of mods to reduce down to y ≡ kn−1 − 1 (mod m). We
know that there will exist a value of m due to this equation, however, we
must use inequalities to figure out how.

• We assume without loss or generality that n ≥ m to aid in our use of
inequalities (we do this before the inequalities).

• We show that the equation will always be positive for every k ∈ {1, 2, 3, · · · ,m}.

The full rigorous proof below is included again to show what a complete proof
looks like. The above method is included to show the reader what the mathe-
matical method is like as a problem solver. The reader may prefer the following
rigorous proof, but hopefully understood how they would go about finding this
proof as problem solvers.

1using our WLOG
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Proof. (Rigorous) Because the equation is symettric, WLOG assume that n ≥ m.
Assume that mn−m− n = mx+ ny. Taking the equation mod m, we arrive at

ny ≡ −n (mod m) =⇒ y ≡ −1 (mod m)2

This implies that y ≥ m− 1, however, this gives

mx+ ny ≥ mx+mn−m > mn−m− n

Contradiction. Now, I prove that

mn−m− n+ k = mx+ ny, k ∈ {1, 2, 3, · · · ,m}

The reason for this is that for k = k1 > m, then we can repeatedly add m to the
reduced value of k1 mod m until we reach k1. Our goal is to prove that for every
k, there exists an x such that

• x is an integer.

• x is a non-negative integer.

Taking the equation mod m brings us to

n(y + 1) ≡ k (mod m) =⇒ y ≡ kn−1 − 1 (mod m)(1)

Using this value of y produces the first desired outcome. For the second, we must
have mn−m− n+ k − ny ≥ 0. For y = m− y0 and m ≥ y0 ≥ 2, we get

mn−m− n+ k − ny = (y0 − 1)n−m+ k > 0

For y0 = 1, we have

y ≡ −1 (mod m) =⇒ kn−1 − 1 ≡ −1 (mod m) =⇒ k ≡ 0 (mod m)

Therefore, k = m, and we get

mn−m− n+ k − ny = mn−m− n+m− n(m− 1) = 0 =⇒ x = 0

Therefore, we have proven our desired statement, and we are done.

Example 5.1.1. (IMO 1983) Let a, b and c be positive integers, no two of
which have a common divisor greater than 1. Show that 2abc − ab − bc − ca
is the largest integer which cannot be expressed in the form xbc + yca + zab,
where x, y, z are non-negative integers.

2from gcd(m,n) = 1
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5.2 Vieta Jumping

Example 5.2.1 (Putnam 1988). Prove that for every real number N , the
equation

x21 + x22 + x23 + x24 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

has a solution for which x1, x2, x3, x4 are all integers larger than N .

Solution. Notice that a trivial solution of this equation is (x1, x2, x3, x4) = (1, 1, 1, 1).
This is our generator of the other solutions, what we are about to do is find a
form for another solution in terms of the other variables for x1 to find a new value
of x1 that works. To do this, we have to isolate the variables to make a quadratic
in terms of x1. We arrive at the equation

x21 − x1(x2x3 + x2x4 + x3x4) + x22 + x23 + x24 − x2x3x4 = 0

Therefore, we notice that if the solutions for x1 are x1 = r1, r2, we have

r1 + r2 = x2x3 + x2x4 + x3x4

by Vietas formula. Assume that (x1, x2, x3, x4) = (r1, s1, t1, u1) is a solution of the
original equation with WLOG u1 ≥ t1 ≥ s1 ≥ r1. Then by the above relationship
(x1, x2, x3, x4) = (s1t1+s1u1+t1u1−r1, s1, t1, u1) is also a solution to the equation.
We notice that s1t1 + s1u1 + t1u1 − r1 > u1 ≥ t1 ≥ s1 ≥ r1. Therefore, the new
solution for x1 is the new largest value. Repeating this procedure for the variables
x2, x3, x4 and so on we can always create a new largest value, hence our largest
value tends to infinity and it is larger than N for all real N �.

That was a mouthful! Go back and read this a few times through, walk away
from your computer and walk around with it a bit, it’s a confusing method but
once you understand it you are golden!

Example 5.2.2 (IMO 2007). Let a and b be positive integers. Show that if
4ab− 1 divides (4a2 − 1)2, then a = b.
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Solution. Start out with noting that because gcd(b, 4ab− 1) = 1, we have:

4ab− 1 | (4a2 − 1)2

⇐⇒ 4ab− 1 | b2(4a2 − 1)2

=⇒ 4ab− 1 | 16a4b2 − 8a2b2 + b2

=⇒ 4ab− 1 | (16a2b2)(a2)− (4ab)(2ab) + b2

=⇒ 4ab− 1 | (1)(a2)− (1)(2ab) + b2

=⇒ 4ab− 1 | (a− b)2

The last step follows from 16a2b2 ≡ (4ab)2 ≡ 1 (mod 4ab − 1) and 4ab ≡ 1
(mod 4ab− 1).

Let (a, b) = (a1, b1) be a solution to 4ab−1|(a− b)2 with a1 > b1 contradicting
a = b where a1 and b1 are both positive integers. Assume a1 + b1 has the smallest
sum among all pairs (a, b) with a > b , and I will prove this is absurd. To do so, I
prove that there exists another solution (a, b) = (a2, b1) with a smaller sum. Set

k = (a−b1)2
4ab1−1 be an equation in a. Expanding this we arrive at

4ab1k − k = a2 − 2ab1 + b21
=⇒ a2 − a(2b1 + 4b1k) + b21 + k = 0

This equation has roots a = a1, a2 so we can now use Vietas on the equation to
attempt to prove that a1 > a2. First, we must prove a2 is a positive integer.
Notice that from a1 + a2 = 2b1 + 4b1k via Vietas hence a2 is an integer. Assume
that a2 is negative or zero. If a2 is zero or negative, then we would have

a21 − a1(2b1 + 4b1k) + b21 + k = 0 ≥ b2 + k

absurd. Therefore, a2 is a positive integer and (a2, b1) is another pair that con-
tradicts a = b. Now, a1a2 = b21 + k from Vieta’s. Therefore, a2 = b2+k

a1
. We desire

to show that a2 < a1.

a2 < a1

⇐⇒ b21 + k

a1
< a1

⇐⇒ b21 +
(a1 − b1)2

4a1b1 − 1
< a21

⇐⇒ (a1 − b1)2

4a1b1 − 1
< (a1 − b1)(a1 + b1)

⇐⇒ (a1 − b1)
4a1b1 − 1

< a1 + b1
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Notice that we can cancel a1−b1 from both sides because we assumed that a1 > b1.
The last inequality is true because 4a1b1 − 1 > 1 henceforth we have arrived at
the contradiction that a1 + b1 > a2 + b1. Henceforth, it is impossible to have
a > b (our original assumption) and by similar logic it is impossible to have b > a
forcing a = b �.

Example 5.2.3 (Classical). Let x and y be positive integers such that xy
divides x2 + y2 + 1. Prove that

x2 + y2 + 1

xy
= 3.

Solution. Let (x, y) = (x1, y1) be a solution such that x + y is minimal and
x2+y2+1

xy
= k 6= 3. WLOG let x1 ≥ y1 (because the equation is symmetric).

However, if x1 = y1, then we must have
2x21+1

x21
= 2 + 1

x21
= k and since k is a

positive integer, x1 = y1 = 1 which gives k = 3 but we are assuming k 6= 3 so
hence x1 6= y1 and x1 ≥ y1 + 1 (we will use this later). I will prove that we are
able to find another solution (x2, y1) with x2 + y1 < x1 + y1 forcing k = 3 since it
contradicts the assumption that x+ y is minimal.

x2 + y21 + 1

xy1
= k

=⇒ x2 − x(ky1) + y21 + 1 = 0

This equation is solved when x = x1, x2. We will now prove that x2 is a positive
integer. Notice that x1 + x2 = ky1 therefore x2 is an integer. Also from Vietas,
x1x2 = y21 + 1 > 0 =⇒ x2 > 0 from x1 > 0. Therefore, x2 is a positive integer

and (x2, y1) is another pair that contradicts the x2+y2+1
xy

= 3 statement. Using

x1x2 = y21 + 1, we arrive at x2 =
y21+1

x1
. We desire x2 < x1.

x2 < x1

⇐⇒ y21 + 1

x1
< x1

⇐⇒ y21 + 1 < x21
butx21 ≥ (y1 + 1)2 = y21 + 2y + 1 > y21 + 1

Therefore, x2 < x1 and we have y1 + x2 < y1 + x1 contradicting our initial
assumption, and hence k = 3 �.
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Example 5.2.4. Let a, b be positive integers with ab 6= 1. Suppose that ab−1
divides a2 + b2. Show that

a2 + b2

ab− 1
= 5

.

Solution. Let (a, b) = (a1, b1) with WLOG a1 ≥ b1 be the pair of integers such
that

a2 + b2

ab− 1
= k 6= 5

and a+ b is the smallest. If a1 = b1, then we would have
2a21
a21−1

= k = 2 + 2
2a21

which

is only an integer when a1 = 1 however a1 = b1 = 1 gives a1b1 = 1 contradicting
ab 6= 1 and giving zero in the denominator. Therefore a1 6= b1 and a1 ≥ b1 + 1 (we
will use this later). I will show that there exist a pair (a, b) = (a2, b1) such that
a1 > a2 contradicting a1 + b1 being minimal.

a2 + b21
ab1 − 1

= k

=⇒ a2 + b21 = kab1 − k
=⇒ a2 − a(kb1) + b21 + k = 0

We now have a quadratic in terms of a with roots a = a1, a2. I will now prove
a2 is a positive integer. Notice that a1 + a2 = kb1 hence a2 is an integer and
a1a2 = b21 + k gives us that a2 is positive since b21 + k is positive and a1 is positive.

We desire to prove that a2 < a1. From Vietas we have a1a2 = b21 + k hence

a2 =
b21+k

a1

a2 < a1

⇐⇒ b21 + k

a1
< a1

⇐⇒ b21 + k < a21

⇐⇒ a21 + b21
a1b1 − 1

< a21 − b21

⇐⇒ a21 + b21
a1b1 − 1

< a1 + b1from difference of squares anda1 − b1 ≥ 1

⇐⇒ a21 + b21 < a21b1 + a1b
2
1 − a1 − b1

⇐⇒ a1 + b1 < a1(a1b1 − 1) + b1(a1b1 − b1)

If a1, b1 ≥ 2 then this inequality is obviously true and a2 < a1 contradicting
the minimal assumption and k = 5. If a1 or b1 are equal to 1 then we are not
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done however and we have to prove that k =
a21+b

2
1

a1b1−1 = 5 in this situation. Since

a1 ≥ b1 + 1, let b1 = 1. We therefore have k =
a21+1

a1−1 = a1 + 1 + 2
a1−1 . Therefore, we

must have a1−1|2 or a1 = 2, 3. In both of these cases, we get k = 22+1
2−1 = 32+1

3−1 = 5.
In both cases we have proved k = 5 hence we are done �.

5.2.1 Exercises

5.1. [Crux] If a, b, c are positive integers such that 0 < a2 + b2 − abc ≤ c show
that a2 + b2 − abc is a perfect square.

5.2. [IMO 1988] Let a and b be positive integers such that ab+ 1 divides a2 + b2.
Prove that a2+b2

ab+1
is a perfect square.

5.3 Wolstenholme’s Theorem

We begin the number theory section with a problem that highlights a key problem
solving technique throughout all of mathematics: experimenting.

Theorem 5.3.1 (Wolstenholme’s). For prime p¿3, express 1 + 1
2

+ 1
3

+ · · ·+
1
p−1 in the form m

n
for m,n relatively prime (meaning they share no common

divisors). Prove that p2 divides m.

Proof. (Experimenting)
When solving this problem, a mathematician would first off try to simplify the

problem. Instead of showing p2 divides m, we first off try to show that p divides
m. To do this, we start out with some small cases, say p = 5. Notice that

1 +
1

2
+

1

3
+

1

4
= 1 +

12

24
+

8

24
+

6

24

=
50

24
=

25

12

We see quite clearly that 52 | 25. We begin writing down some observations that
could help us later in the problem.

• The product of the denominators (2, 3, 4) is relatively prime to 5. In fact,
the whole set {1, 2, 3, · · · , p − 1} is relatively prime to p so it makes sense
that there product is relatively prime to p as well.

• In the set of denominators (1, 2, 3, 4) we have 1 + 4 = 5, 2 + 3 = 5.
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We test out the second observation to see if it is of any use:(
1 +

1

4

)
+

(
1

2
+

1

3

)
=

5

4
+

5

6
= 5

(
1

4
+

1

6

)
We now invoke our first observation, and notice that since gcd(4 × 6, 5) = 1,

the numerator must be divisible by 5 because there are no factors of 5 in the
denominator of 1

4
+ 1

6
.

We try extending this grouping idea to the general case:

1 +
1

2
+

1

3
+ · · ·+ 1

p− 1
=

(
1 +

1

p− 1

)
+

(
1

2
+

1

p− 2

)
+ · · ·

Notice that

1 +
1

p− 1
=

p

p− 1
,

1

2
+

1

p− 2
=

p

2(p− 2)
, · · · 1

j
+

1

p− j
=

p

j(p− j)

Therefore we can factor out a power of p and the resulting numerator will be
divisible by p since there are no powers of p in the denominator.

Now that we’ve gotten that taken care of, let’s move on to the p2 problem. The
first thought that we have at this point is to see what the remaining denominators
are after we factor out this first power of p. Let’s analyze what we had when p = 5:

5

(
1

4
+

1

6

)
= 5

(
10

24

)
= 5

(
5

12

)
Now, obviously 52 | m in this case. The question that puzzles us now is why

is the numerator of 1
4

+ 1
6

likewise divisible by p? Let’s try another example when
p = 7:(

1 +
1

6

)
+

(
1

2
+

1

5

)
+

(
1

3
+

1

4

)
= 7

(
1

6
+

1

10
+

1

12

)
= 7

(
120 + 72 + 60

6× 10× 12

)
= 7

(
252

6× 10× 12

)
= 7× 7×

(
36

6× 10× 12

)
Whatever the resulting expression is, it will not contribute any powers of 7

therefore the resulting numerator is divisible by 72. But why is 120 + 72 + 60
divisible by 7? Going through two base cases has not yielded anything yet. We
could go through and try p = 11, but I’ll spear the reader this. When we hit a
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dead end in a math problem, we try a different technique. We go back to the
general case and remember the equation

1

j
+

1

p− j
=

p

j(p− j)

After factoring out a p, we think ”what if we consider the resulting expression
mod p”. Our study of inverses in the prerequisites tells us that we can indeed
consider this expression mod p. Notice that

j(p− j) ≡ j(−j) ≡ −j2 (mod p)

Whoah! This expression seems extremely useful. Since 1
j

+ 1
p−j = p

j(p−j) uses up
two terms, and we want for j to take on all the residues mod p, we must multiply
the above expression by 2. For example, p

1(p−1) ≡ −12, but we want both the −12

and the −(p− 1)2 terms. Therefore, we now have

2

[(
1

1
+

1

p− 1

)
+

(
1

2
+

1

p− 2

)
+ · · ·

]
≡ −

(
1

12
+

1

22
+ · · ·+ 1

(p− 1)2

)
(mod p)

Since gcd(2, p) = 1, it is suficient to show that

−
(

1

12
+

1

22
+ · · ·+ 1

(p− 1)2

)
≡ 0 (mod p)

Again, we don’t know exactly how to proceed, but we think we have hit the right
idea. Let’s substitute p = 5 into the new expression and see what results. What
we desire to show is

−
(

1

12
+

1

22
+

1

32
+

1

42

)
≡ 0 (mod 5)

We think back to what frations mean modulo 5. Fractions are the same thing
as inverses, so let’s think about the set of inverses modulo 5. The set we are
looking at is {1−1, 2−1, 3−1, 4−1} (mod 5). Notice that 1−1 ≡ 1 (mod 5), 2−1 ≡ 3
(mod 5), 3−1 ≡ 2 (mod 5), 4−1 ≡ 4 (mod 5) therefore we have

{1−1, 2−1, 3−1, 4−1} ≡ {1, 3, 2, 4} (mod 5)

Notice that this is the same reordered set as {1, 2, 3, 4}. Therefore, we arrive at

−
(

1

12
+

1

22
+

1

32
+

1

42

)
≡ −

(
12 + 22 + 32 + 42

)
(mod 5)
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The resulting expression is divisible by 5 (check it yourself!) Now, we move onto
the general case. We desire to show that

{1−1, 2−1, 3−1, · · · , (p− 1)−1} ≡ {1, 2, · · · , (p− 1)} (mod p)

Now, how would we do this? If we could show that no two numbers in the first set
are the same, then the two sets will be congruent. This inspires us to use proof
by contradiction, where we assume something is true, then show that this is
actually a contradiction. Assume that

a−1 ≡ b−1 (mod p), a 6≡ b (mod p)

However, multiply both sides of the equation by ab to result in

aa−1b ≡ abb−1 (mod p)

a ≡ b (mod p)

Contradiction! Therefore, the two sets must be the same and in general we have

−
(

1

12
+

1

22
+ · · ·+ 1

(p− 1)2

)
≡ −

(
12 + 22 + 32 + · · ·+ (p− 1)2

)
(mod p)

Now, we use the identity

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

To finally arrive at

−
(
12 + 22 + 32 + · · ·+ (p− 1)2

)
= −

(
(p− 1)(p)(2p− 1)

6

)
Since gcd(p, 6) = 1 (since p ≥ 5), the numerator of the expression is divisible by
p implying that p2 | m.

That was a mouthful! Throughout this problem, we explored many useful
problem solving strategies.

• Weaken the problem: When you have no idea how to attack a problem
initially, try weakening the condition. In this case, we wanted to show that
p2 | m, so we tried tos how p | m, which provided motivation for grouping
the sum.

• Experimenting: We analyzed simple cases such as p = 5 and p = 7 to see
how would we would go about the weakened version of the problem. We
wrote down some observations, and figured out how to solved the weakened
problem.
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• Writing out the general form: When our experimentation failed to solve
the general case, we went back to the general form of the equation we found
before. Doing so helped us relate the problem to the sum of the squares of
inverses.

• Back to the drawing board: While the new expression looked more help-
ful, we had no idea how to deal with inverses. Therefore, we experimented
with inverses a bit to make the key observation that the set of inverses mod
p and the set of integers mod p (excluding 0) are the same.

• Prove your lemmas: While our observation looked extremely helpful, we
had to rigorously proof our lemma. In mathematical proof writing, you
cannot take statements for granted, you have to prove them. Thankfully
the lemma was relatively simple to prove.

Here is a formal writeup of the above proof. The reason that I did not show
this formal argument immediately, is many people are left scratching their heads
thinking ”I understand this, but how did the author come up with this?” Also,
to be fully rigorous we must use sigma notation, which is likely confusing to some
readers. You can read the following proof lightheartedly, it is included to show
the reader how to write up a formal proof of their own once they solve an exciting
math problem.

Proof. (Rigorous)
We group the terms as such:

2

p−1∑
i=1

1

i
=

p−1∑
i=1

(
1

i
+

1

p− i

)

=

p−1∑
i=1

(
p

i(p− i)

)
Since gcd(2, p) = 1, we now desire to show that

p−1∑
i=1

1

i(p− i)
≡ 0 (mod p)

Notice that i(p− i) ≡ −i2, therefore

p−1∑
i=1

1

i(p− i)
≡ −

p−1∑
i=1

1

i2
(mod p).
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Lemma. All inverses mod a prime are distinct, i.e. a−1 ≡ b−1 (mod p) ⇐⇒ a ≡
b (mod p)

Proof.

a−1 ≡ b−1 (mod p)

(ab) a−1 ≡ (ab) b−1 (mod p)

a ≡ b (mod p)

Therefore

{1−1, 2−1, 3−1, · · · , (p− 1)−1} ≡ {1, 2, 3, · · · , (p− 1)} (mod p)

Therefore

−
p−1∑
i=1

1

i2
(mod p) ≡ −

p−1∑
i=1

i2

=
(p− 1)p(2p− 1)

6
≡ 0 (mod p)

Since gcd(p, 6) = 1. We are now done.

Notice how while the above proof is extremely concise, we have no motivation
for why we broke the sum up as such, or how we would have thought of the above
solution alltogether!

Here is a similar problem, which is much harder than this above theorem. We
again include full motivation and a fully rigorous solution.

Example 5.3.1. (IberoAmerican Olympiad) Let p > 3 be a prime. Prove
that if

p−1∑
i=1

1

ip
=

n

m

with (n,m) = 1 then p3 divides n.

Proof. (Experminenting) Incomplete.

Proof. (Rigorous) This is equivalent to wishing to prove that

2

p−1∑
i=1

1

ip
≡ 0 (mod p3)
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treating each of the numbers as inverses and using gcd(p, 2) = 1.

We now notice 1
jp

+ 1
(p−j)p = (p−j)p+jp

jp(p−j)p . Therefore

2

p−1∑
i=1

1

ip
=

p−1∑
i=1

(p− i)p + ip

ip(p− i)p

By lifting the exponent vp ((p− i)p + ip) = vp (p− i+ i)+vp(p) = 2. Therefore
we can factor a p2 out of the numerator to give us

p−1∑
i=1

(p− i)p + ip

ip(p− i)p
= p2

p−1∑
i=1

(p−i)p+ip
p2

ip(p− i)p
≡ 0 (mod p3)

⇐⇒
p−1∑
i=1

(p−i)p+ip
p2

ip(p− i)p
≡ 0 (mod p)

Notice that i ≡ − (p− i) (mod p) so hence we now need

p−1∑
i=1

(p−i)p+ip
p2

i2p
≡ 0 (mod p)

since we can take the negative out of the denominator.
We consider

p−1∑
i=1

( p+1
2

)p+( p−1
2

)p

p2

i2p
+

p−1∑
i=1

ip+(p−i)p−( (p+1)
2

)p−( (p−1)
2

)p

p2

i2p

We desire to show each part is divisible by p. For the first sum notice that
we want

∑p−1
i=1

1
i2p
≡
∑p−1

i=1 i
2p (mod p) since each element from 1 to p − 1 has a

distinct inverse including 1−1 ≡ 1 (mod p) and (p− 1)−1 ≡ (p− 1) (mod p).
By Fermat’s Little Theorem we have

p−1∑
i=1

i2p ≡
p−1∑
i=1

i2 (mod p) ≡ (p− 1)(p)(2p− 1)

6
≡ 0 (mod p)

since p 6= 2, 3.

Now we desire to prove that
ip+(p−i)p−( (p+1)

2 )
p
−( p−1

2 )
p

p2
≡ 0 (mod p). Since

gcd(p, 2) = 1 we want

2pip + 2p(p− i)p − (p+ 1)p − (p− 1)p ≡ 0 (mod p3)

2p
[
ip +

(
p

1

)
p(−i)p−1 + (−i)p

]
−
[
p

(
p

1

)
+ 1 + p

(
p

1

)
(−1)p−1 + (−1)p

]
≡ 0 (mod p3)

2p
[
p2
]
− 2p2 ≡ 0 (mod p3)
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The second step follows from the fact that p2
(
p
2

)
≡ 0 (mod p3) and every i ≥ 3

we have pi
(
p
i

)
≡ 0 (mod p3), and the third step follows from p being odd.

Now, p2 (2p − 2) ≡ 0 (mod p3) is true by Fermat’s Little Theorem therefore
we are done.

5.4 Bonus Problems

Example 5.4.1 (IMO 1989). Prove that for all n we can find a set of n
consecutive integers such that none of them is a power of a prime number.

Solution. I claim that the set {(2n+ 2)! + 2, (2n+ 2)! + 3, · · · , (2n+ 2)! + n+ 1}
satisfies the problem statement. Notice that

(2n+ 2)! + 2 = 2

[
1 +

(2n+ 2)!

2

]
.

Since (2n+2)!
2
≡ 0 (mod 2) it follows that 1 + (2n+2)!

2
≡ 1 (mod 2); henceforth it is

impossible for (2n + 2)! + 2 to be a power of a prime number because it has an
even and an odd factor.

Next, notice that

(2n+ 2)! + k = k

[
1 +

(2n+ 2)!

k

]
.

Because 2 ≤ k ≤ n+ 1 we must have (2n+ 2)! ≡ 0 (mod k2) or hence (2n+2)!
k
≡ 0

(mod k). Therefore 1 + (2n+2)!
k
≡ 1 (mod k). However, since (2n + 2)! + k is

divisible by k it must be a perfect power of k, but since 1 + (2n+2)!
k

is not a perfect
power of k it follows that (2n+ 2)! + k is not a perfect power of a prime.

Motivation. The way that we arrived at this set may be a bit confusing to the
reader so I explain my motivation. When I see a problem like this I instantly
think of factorials. The reason behind this is that if I asked to find a set of n
consecutive integers none of which are prime, I would use the set

{(n+ 1)! + 2, (n+ 1)! + 3, · · · , (n+ 1)! + n+ 1}

for n ≥ 1. The reason behind this is we are looking for numbers that have two
divisors.
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In this case we are looking for numbers that have a divisor divisible by k and
another that is not divisible by k. I noticed that looking in the prime factorization
of (2n)! that we can find two factors of any number k with 2 ≤ k ≤ n. Therefore
looking at (2n!) + k we can find that this number is divisible by k but when we
factorize it we are left with a term that is 1 (mod k).

(Note: The following example includes some intense notation. For this reason
we have included a table for f2(x) and g2(x) in the ”motivation” section in hopes
for the reader to better understand the notation.)

Example 5.4.2 (USA TSTST 2013). Define a function f : N → N by
f(1) = 1, f(n + 1) = f(n) + 2f(n) for every positive integer n. Prove that
f(1), f(2), . . . , f(32013) leave distinct remainders when divided by 32013.

Solution. Define f(x) to be the same as in the problem. Define a function fn(x)
such that 0 ≤ fn(x) ≤ 3n − 1 and fn(x) ≡ f(x) (mod 3n). Next, define gn(x)
such that 0 ≤ gn(x) ≤ φ(3n)− 1 and gn(x) ≡ f(x) (mod φ(3n)). We re-write the
problem statement as if x, y ∈ {1, 2, · · · , 3n} we have fn(x) = fn(y) ⇐⇒ x = y
(i.e. fn(x) is distinct). A few nice properties of these:

1. By Chinese remainder theorem we have fn−1(x) ≡ fn(x) ≡ gn(x) (mod 3n−1).

2. By Euler’s totient we have fn(x) ≡ 2gn(x−1) + fn(x− 1) (mod 3n).

3. From (1) and (2) along with Chinese Remainder Theorem we have gn(x) ≡
2gn(x−1) + gn(x− 1) (mod φ(3n))

I claim that fn(x) = fn(y) ⇐⇒ x ≡ y (mod 3k). This is to say that the
values of fn(x) are distinct when x ∈ {1, 2, · · · , 3n} and we have fn(x) has a
period of 3n (i.e fn(x) = fn (x+ 3nm) where m is a positive integer.

Base case: We have f1(1) = 1, f1(2) = 0, f1(3) = 2 therefore the problem
statement holds for k = 1. Notice that g1(x) = 1 therefore f1(x) ≡ 2 + fn(x− 1)
(mod 3) from proposition (2). Therefore it is clear that f1(x) = f1(x+ 3m).

Inductive hypothesis: fn(x) = fn(y) ⇐⇒ x ≡ y (mod 3n) holds for
n = k. I claim it holds for n = k + 1.

From (1) we have gk+1(x) ≡ fk(x) (mod 3k). Therefore we have

gk+1(x) ≡ gk+1(y) (mod 3k) ⇐⇒ x ≡ y (mod 3k)

Since φ(3k+1) = 2 · 3k and gk+1(x) is odd we have gk+1(x) = gk+1(x + 3km) for
positive integers m. This means that we can separate gk+1(x) into three ”groups”
that have length 3k and are ordered gk+1(1), gk+1(2), · · · , gk+1(3

k).
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Because fk(x) ≡ gk+1(x) ≡ fk+1(x) (mod 3k) we can separate fk+1(x) into
three groups all of whose elements correspond to fk(x) mod 3k. We now have

fk+1(x) ≡ fk+1(y) (mod 3k) ⇐⇒ x ≡ y (mod 3k)

We must now prove that

• fk+1(x) = fk+1(x+ 3k+1m) where m is a positive integer.

• fk+1(x) 6≡ fk+1(x+ 3k) (mod 3k+1) 6≡ fk+1(x+ 2 · 3k) (mod 3k+1).

Both of these two statements boil down to (2). We notice that we have

fk+1(x+ 3k) ≡ 2gk+1(x+3k−1) + fk+1

(
x+ 3k − 1

)
(mod 3k+1)

=⇒ fk+1(x+ 3k) ≡ 2gk+1(x+3k−1) + 2gk+1(x+3k−2) + · · ·+ 2gk+1(x) + fk+1(x) (mod 3k+1)

We now notice that gk+1 (y) takes on all of the odd integers from 1 to φ
(
3k+1

)
−

1. This is exactly the number of elements we have above henceforth it happens
that

fk+1(x+ 3k) ≡ 21 + 23 + · · ·+ 2φ(3
k+1)−1 + fk+1(x) (mod 3k+1)

fk+1(x+ 3k) ≡ 2

(
2φ(3

k+1) − 1

3

)
+ fk+1(x) (mod 3k+1)

.
Via lifting the exponent we have

v3

(
2φ(3

k+1) − 1
)

= k + 1

Therefore v3

(
2φ(3

k+1) − 1

3

)
= k henceforth fk+1(x + 3k) ≡ fk+1(x) (mod 3k)

but fk+1(x + 3k) 6= fk+1(x) (mod 3k+1). We write fk+1(x + 3k) − fk+1(x) = z3k

where gcd(z, 3) = 1. Notice that substituting x = n3k + x1 we arrive at

fk+1(x1 + (n+ 1) · 3k)− fk+1(x1 + n3k) ≡ z3k (mod 3k+1)

from which we can derive

fk+1

(
x+ a · 3k

)
− fk+1

(
x+ b · 3k

)
≡ (a− b)3k (mod 3k+1)

Now, notice that fk+1(x+3k)−fk+1(x) = z3k, fk+1(x+2·3k)−fk+1(x+3k) = z3k

and fk+1(x+2 ·3k)−fk+1(x) = 2z3k therefore the first part of our list of necessary
conditions is taken care of. Now, notice that substituting a = 3m, b = 0 into the
second equation we arrive at the second condition.

Our induction is henceforth complete. Because the problem statement holds
for all n it also holds for 2013 and we are done.
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Motivation. The main motivation I had when solving this problem was to look at
the table of f2(x) and g2(x). This table was derived using properties (2) and (3).
Notice how the other properties hold for this table.

x f2(x) g2(x)
1 1 1
2 3 3
3 5 2
4 1 7
5 3 9
6 5 8
7 1 4
8 3 6
9 5 5

Example 5.4.3 (IMO 2005). Determine all positive integers relatively prime
to all the terms of the infinite sequence 2n + 3n + 6n − 1, n ≥ 1

Solution. [[2]]
I prove that for all primes p there exists a term in the sequence that is divisible

by p. I claim that when n = p− 2 we have 2p−2 + 3p−2 + 6p−2 − 1 ≡ 0 (mod p).

6
(
2p−2 + 3p−2 + 6p−2 − 1

)
≡ 3(2p−1) + 2(3p−1) + 6p−1 − 6

≡ 3(1) + 2(1) + 6(1)− 6 ≡ 0 (mod p)

Therefore when p 6= 2, 3 it follows that

2p−2 + 3p−2 + 6p−2 − 1 ≡ 0 (mod p)

When p = 2 we notice that n = 1 gives 21 + 31 + 61 − 1 = 10 ≡ 0 (mod 2) and
when p = 3 that n = 2 gives 22 + 32 + 62 − 1 = 48 ≡ 0 (mod 3).

In conclusion notice that all primes divide a term in the sequence hence the
only positive integer relatively prime to every term in the sequence is 1.

Motivation. The motivation behind this problem is noticing that most likely every
prime divides into at least one term and then trying to find which value of n
generates this. The motivation fo rhte choice of n stems from noticing that 2p−2 +
3p−2 + 6p−2 − 1 ≡ 1

2
+ 1

3
+ 1

6
− 1 ≡ 0 (mod p). This is unfortunately not a fully
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rigorous proof as most olympiads do not accept working in fractions when we
think about modulos (even though it is a fully legitimate method and is in fact
necessary to prove some theorems).

Example 5.4.4 (IMO 1971). Prove that we can find an infinite set of positive
integers of the form 2n − 3 (such that n is a positive integer) every pair of
which are relatively prime.

Solution. [[15],[3]]

We use induction. Our base case is when a set has 2 elements and that is
done by {5, 13}. Let a set have N elements and I prove it is always possible to
construct a N + 1 element set with the new element larger than all the previous
elements. Let all the distinct primes that divide the least common multiple of the
N elements be p1, p2, · · · , pk. Denote the new element that we add to the set to be
2x− 3. We desire to have 2x− 3 6≡ 0 (mod pj) for 1 ≤ j ≤ k. Since gcd(pj, 2) = 1
we have 2pj−1 ≡ 1 (mod pj). Therefore letting

x =
k∏
i=1

(pi − 1)

to give us 2x − 3 ≡ −2 (mod pj) and since gcd(pj, 2) = 1 we have 2x − 3 6≡ 0
(mod pj) as desired.

Notice that this process is always increasing the newest member of the set
therefore we may do this process an infinite amount of times to give us an infinite
set.

Motivation. The motivation behind using induction is to think of how you can
construct an infinite set. It would be quite tough to build an infinite set without
finding a way to construct a new term in the sequence which is essentially what
we do here.

Example 5.4.5. (IMO Shortlist 1988) A positive integer is called a double
number if its decimal representation consists of a block of digits, not com-
mencing with 0, followed immediately by an identical block. So, for instance,
360360 is a double number, but 36036 is not. Show that there are infinitely
many double numbers which are perfect squares.
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Solution. Let C(n) be this function and notice that when n =
∑k−1

i=0 (10iai) where
0 ≤ am ≤ 9 when m 6= k − 1 and 1 ≤ ak−1 ≤ 9, we have

C(n) = (10k + 1)
k−1∑
i=0

(10iai)

We set

• 10k + 1 = 49pe11 · · · pemm

•
k−1∑
i=0

(10iai) = 36pe11 · · · pemm

Obviously C(n) is a perfect square in this case. Also since

10k−1 <
k−1∑
i=0

(10iai) =
36

49
(10k + 1) < 10k

it follows that 1 ≤ ak−1 ≤ 9. It is left to prove that there are infinite k such that
49|(10k + 1). Noticing that ord49(10) = 42, we see that k = 42x+ 21 satisfies the
condition 10k+1 ≡ 0 (mod 49) hence we have constructed infinitely many double
numbers which are perfect squares.
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Notation

This text was written primarily for any audience who enjoys number theory and
wants to learn new problem solving skills. In this text, we will attack many hard
problems using many different methods and tips in number theory. In this text,
we attack many hard math problems using simple methods and formulae. Each
section begins with a theorem or general idea, along with a fully rigorous proof.
By the end of this text, I hope the reader has mastered the method of induction.
Each section is then filled with problems off of the main idea of the section.
Instead of including many computational problems, we begin with a few “easier”
problems and then dig right into olympiad problems. While this may be hard or
challenging to those just getting acquainted with mathematics, through personal
experience, this is the best way to learn number theory. I highly recommend the
reader spends time on each and every problem before reading the given solution.
If you do not solve the problem immediately, do not fret, it took me a very long
time to solve most of the problem myself.

Spend your time and struggle through the problems, and enjoy this text!

A.0.1 Sets

• The real numbers R are any positive or negative number including 0, such
as 1, 1 +

√
2,−π, e, etc

• The integers Z are defined as the integers:

{· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }

Z+ denotes the positive integers {1, 2, 3, · · · } while Z− denotes the negative
integers {· · · ,−3,−2,−1}.

• The natural numbers N are defined as the positive integers or Z+. The
natural numbers including 0 are defined as N0.

115
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• The rational numbers Q are defined as the ratio of two integers, such as 2
3

or 17
29

.

• The complex numbers C are defined as a+ bi where a, b ∈ R.

• The set of polynomials with integer coefficients is defined as Z[x]. For ex-
ample, x3 − 19x18 + 1 ∈ Z[x], however, x2 − πx 6∈ Z[x].

• The set of polynomials with rational coefficients is defined as Q[x]. For
example, x2 − 1

2
x ∈ Q[x].

We say that a divides b if b
a

is an integer. For example, 4 divides 12 since
12
4

= 3, however, 4 does not divide 13 since 13
4

= 3.25. We write a divides b as
a | b. In this, b is also a multiple of a. In this text, when we say ”divisors”
we assume positive divisors. When considering divisors of natural n, we only
have to work up to

√
n. The reason for this is if n = ab then we obviously cannot

have a, b >
√
n.

Induction is a proof technique used often in math. As it can be tricky to those
who are understanding it for the first time, we begin with an example problem
and explain the method of induction as we solve this problem.

Example A.0.1. Show that for all natural n, 1 + 2 + 3 + · · ·+ n = n(n+1)
2

.

Solution. In induction, we first off have to show a statement holds for a base case,
typically n = 1. In this case,

1 =
1× 2

2

so the base case holds. We now show that if the problem statement holds for
n = k, then it holds for n = k+ 1. This essentially sets off a chain, where we have

n = 1 =⇒ n = 2 =⇒ n = 3 =⇒ · · ·

The reason we have to show the base case is because it is the offseter of the chain.
Because of this reason, we can think of induction as a chain of dominoes. Once
we knock down the first domino, and show that hitting a domino will knock down
the proceeding domino, we know all the dominoes will be knocked down. Our
inductive hypothesis is that the problem statement holds for n = k, or henceforth

1 + 2 + 3 + · · ·+ k =
k(k + 1)

2
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We now need to show that it holds for n = k + 1 or we need to show that
1 + 2 + 3 + · · ·+ (k + 1) = (k+1)(k+2)

2
. Now, notice that

1 + 2 + 3 + · · ·+ (k + 1) = (1 + 2 + 3 + · · ·+ k) + k + 1

=
k(k + 1)

2
+ k + 1 =

(k + 1)(k + 2)

2

As desired. Therefore, we have completed our induction.

Theorem A.0.1 (Induction). Let’s say we have a statement P (n) that we
wish to show holds for all natural n. It is sufficient to show the statement holds
for n = 1 and that P (k) =⇒ P (k + 1) for natural k, then the statement is
true for all natural n.

NOTE: The statement P (k) =⇒ P (k + 1) means that if P (k) is true
(meaning the statement holds for n = k), then P (k + 1) is true. This is used
for ease of communication.

Proof. We use the well ordering principle. The well ordering principle states
that every set has a smallest element. In this case, assume that for sake of
contradiction, P (n) is not true for some n = x ∈ S. Let y be the smallest
element of S and since y > 1 (from us showing the base case), we have y− 1 ≥ 1.
Therefore P (y − 1) is true. We also know that P (k) =⇒ P (k + 1). Therefore,
P (y − 1) =⇒ P (y), contradiction.

Theorem A.0.2 (Strong induction). For a statement P (n) that we wish to
show holds for all natural n, it is sufficient to show a base case (n = 1) and
that if P (n) is true for n ∈ {1, 2, 3, · · · , k} it implies P (k + 1) is true.

Proof. The proof is identical to the above proof verbatum.

It is assumed the reader has prior knowledge of induction, so this should be
review. If induction is still confusing at this point, we recommend the reader reads
up on induction as it is vital for this text.

This section includes formulas it is assumed the reader knows.

Theorem A.0.3 (Binomial Theorem). For n natural,

(x+ y)n =
n∑
i=0

(
n

i

)
xiyn−i
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Definition A.0.1. The greatest common divisor of two integers a, b is denoted
gcd(a, b). For example, gcd(4, 12) = 4.

Definition A.0.2. The least common multiple of two integers a, b is denoted
lcm[a, b]. For example lcm[4, 15] = 60

Definition A.0.3. We define

a ≡ b (mod c) ⇐⇒ c | a− b

For example 13 ≡ 1 (mod 4) since 4 | 12.

Definition A.0.4. A number is said to be prime if the only divisors of the number
are 1 and itself. For example, 5 is prime since 1 | 5, 2 - 5, 3 - 5, 4 - 5, 5 | 5. On the
other hand, 6 is not prime as 1, 2, 3, 6 | 6. A number is said to be composite if n
can be expressed in the form ab for a, b being positive integers greater than 1. 1
is said to be neither prime nor composite.

Definition A.0.5. −→←− means ”contradiction”

Definition A.0.6. The degree of a polynomial is defined as the highest exponent
in its expansion. For example, deg(x3 − 2x2 + 1) = 3 and deg(−x2 + x4 − 1) = 4.



B

Solutions

Solutions of Chapter 1

1.1 Note that
603 = 301× 2 + 1

Therefore, by the Euclidean Algorithm, we have gcd(603, 301) = gcd(1, 301) = 1 .

1.2

289 = 153× 1 + 136

153 = 136× 1 + 17

136 = 17× 8 + 0.

Therefore gcd(153, 289) = 17 .

1.3

189 = 133× 1 + 56

133 = 56× 2 + 19

56 = 19× 2 + 18

19 = 18× 1 + 1.

Therefore gcd(189, 133) = 1 .

1.4 Let the two numbers be a, b with a > b. Recall that gcd(a, b)lcm[a, b] = ab,
therefore ab = 384. Furthermore, a = b+ 8, therefore we have

b(b+ 8) = 384 =⇒ b2 + 8b− 384 = 0 =⇒ b = 16.

This gives a = b+ 8 = 24, therefore a+ b = 24 + 16 = 40 .
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1.5 The first step is to divide the leading term of a(x), x5, by the leading term
of b(x), x3: x5

x3
= x2. Therefore

x5 + 4x2 + 2x =
(
x3 + 2x2

)
x2 +

(
−2x4 + 4x2 + 2x

)
.

The next step is to divide the leading term of r1(x), −2x4, by the leading term
of b(x), x3: −2x4

x3
= −2x. We add this to the quotient and subtract from the

remainder:

x5 + 4x2 + 2x =
(
x3 + 2x2

) (
x2 − 2x

)
+
(
4x3 + 4x2 + 2x

)
.

Finally, we once again divide the leading of r2(x), 4x3 by the leading term of x3:
4x3

x3
= 4. We add this to quotient and subtract from the remainder:

x5 + 4x2 + 2x =
(
x3 + 2x2

) (
x2 − 2x+ 4

)
+
(
−4x2 + 2x

)
.

Therefore, q(x) = x2 − 2x+ 4 and r(x) = −4x2 + 2x. Note that deg(r(x)) = 2 <
deg(b(x)) = 3.

1.6 In order for the improper fraction to not be in lowest terms, we must have
gcd(N2 + 7, N + 4) 6= 1. We find that

N2 + 7 = (N + 4) (N − 4) + 23.

Therefore gcd(N2+7) = gcd(N+4, 23) Since 23 is prime, we must have 23 | N+4.
The smallest value of N which works in the specified range is 23 × 0 + 19 = 19,
and the largest is 23× 85 + 19 = 1974. Therefore, there is a total of 85 + 1 = 86
values of N which work.

1.7

gcd(21n+ 4, 14n+ 3) = gcd(7n+ 1, 14n+ 3)

= gcd(7n+ 1, 14n+ 3− 2(7n+ 1))

= gcd(7n+ 1, 1)

= 1.

1.8

x4 − x3 =
(
x3 − x

)
(x− 1) +

(
x2 − x

)
x3 − x =

(
x2 − x

)
(x+ 1) .

Therefore, gcd(x4 − x3, x3 − x) = x2 − x .
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1.9 We use the division algorithm to divide ax3 + bx2 + 1 by x2−x− 1. First off,
divide the leading terms to get ax3

x2
= ax:

ax3 + bx2 + 1 =
(
x2 − x− 1

)
(ax) +

[
(a+ b)x2 + ax+ 1

]
.

Next, divide the leading term of the remainder by the leading term of the dividend

to get (a+b)x2

x2
= a+ b. Add this to the quotient:

ax3 + bx2 + 1 =
(
x2 − x− 1

)
(ax+ a+ b) + [(2a+ b)x+ a+ b+ 1] .

In order for x2−x−1 to divide ax3 + bx2 +1, the remainder must be 0. Therefore
we must have {

2a+ b = 0

a+ b+ 1 = 0
.

From the first equation, we hae b = −2a. Substituting this into the second
equation gives a+ (−2a) + 1 = 0 =⇒ a = 1 and b = −2 .

1.10 We use induction. For a base case, note that gcd(F1, F2) = gcd(1, 1) = 1
and gcd(F2, F3) = gcd(1, 2) = 1.

For the inductive hypothesis part, assume that gcd(Fm, Fm+1) = 1. We now
show that this implies that gcd(Fm+1, Fm+2) = 1, completing the induction. By
the Euclidean Algorithm, note that

gcd(Fm+1, Fm+2) = gcd(Fm+1, Fm+2 − Fm+1).

By definition of Fibonacci numbers, we have Fm+2 = Fm+1 + Fm =⇒ Fm+2 −
Fm+1 = Fm. Therefore,

gcd(Fm+1, Fm+2) = gcd(Fm+1, Fm) = 1

by the inductive hypothesis. Therefore, we have shown that m =⇒ m + 1 and
by induction, we are done.

1.11 Let the two relatively prime numbers be a and b. Assume for the sake of
contradiction that gcd(ab, a + b) 6= 1, meaning that there exists a prime p such
that p | ab and p | a+ b. Recall that by Euclid’s Lemma,

p | ab =⇒ p | a or p | b.

However, in the case that p | a, since we also know that p | a + b, we must have
p | b, contradicting the fact that a and b are relatively prime. The same argument
holds in the case that p | b. Therefore, we have arrived at a contradiction, and we
must have gcd(ab, a+ b) = 1.
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1.12

97 = 5× 19 + 2

5 = 2× 2 + 1.

Running these steps in reverse, we find that

1 = 5− 2× 2 = 5− 2× (97− 5× 19) = 5× 39 + 97× (−2).

Therefore x = 39 and y = −2.

1.13

1110 = 1011× 1 + 99

1011 = 99× 10 + 21

99 = 21× 4 + 15

21 = 15× 1 + 6

15 = 6× 2 + 3.

Running these steps in reverse gives

3 = 15− 2× 6

= 15− 2(21− 15× 1) = 3× 15− 2× 21

= 3× (99− 21× 4)− 2× 21 = 3× 99− 14× 21

= 3× 99− 14× (1011− 99× 10) = 143× 99− 14× 1011

= 143× (1110− 1011)− 14× 1011 = 143× 1110− 157× 1011.

Therefore x = 143 and y = −157.

1.14 By the Euclidean Algorithm, note that

1691 = 1349× 1 + 342

1349 = 342× 3 + 323

342 = 323× 1 + 19

323 = 19× 17 + 0.

Therefore, gcd(1691, 1349) = 19, and it is impossible for a linear combination of
1691 and 1349 to be equal to 1.

1.15 Note that the pair (x, y) = (−5, 2) satisfies the equation. The problem asks
to find all integers x, y, therefore, we need to parameterize it. If (x1, y1) is a
solution, then so is (x1 + 13, y1 − 5) since

5(x1 + 13) + 13(y1 − 5) = 5x1 + 13y1 + (65− 65) = 1.

Therefore, for integer t, all solutions (x, y) are characterized by (−5 + 13t, 2− 5t) .
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1.16 Note that

nk − 1 = (n− 1)
(
nk−1 + nk−2 + · · ·+ n+ 1

)
.

Therefore,

(n− 1)2 | nk − 1 ⇐⇒ (n− 1) |
(
nk−1 + nk−2 + · · ·+ n+ 1

)
.

Furthermore, since n ≡ 1 (mod n− 1), we have

nk−1 + nk−2 + · · ·+ n+ 1 ≡ 1k−1 + 1k−2 + · · ·+ 1 + 1 ≡ k (mod n− 1).

Therefore, (n− 1) | k.

1.17 Assume for the sake of contradiction that
√

2 is rational. Therefore, for
relatively prime integers m,n, we have

√
2 = m

n
. Multiply by n on both sides and

square in order to get
m2 = 2n2.

Since the right hand side is a multiple of 2, the left hand side must be also,
therefore 2 | m. For some integer m1, set m = 2m1:

(2m1)
2 = 2n2 =⇒ 2m2

1 = n2.

By similar logic, the left hand side is a multiple of 2, therefore the right hand
side must be, therefore 2 | n. However, this contradicts the initial assumption
that m

n
was in lowest terms, since 2 divides both the numerator and denominator.

Therefore, we have arrived at a contradiction and are done.

1.18 Assume for the sake of contradiction that log10(2) is rational. Therefore,
for relatively prime integers m,n, we must have log10(2) = m

n
. Rewriting this

equation, we see that it is equivalent to

2
m
n = 10.

Taking everything to the power of n gives 2m = 10n. Note that 10n = 2n5n,
therefore, the equation becomes 2m = 2n5n. However, this is a contradiction of
the Fundamental Theorem of Arithmetic, because the right side has a prime factor
of 5 and the left side does not.

1.19 We begin by prime factorizing 2004: 2004 = 22 ·3·167. Therefore, 20042004 =
24008 · 32004 · 1672004. Hence, any divisor of 20042004 will take on the form m =
2a3b167c. If the divisor m has exactly 2004 positive integers, then this is equivalent
to

τ(m) = (a+ 1) (b+ 1) (c+ 1) = 2004 = 22 · 3 · 167.
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We consider the set {a + 1, b + 1, c + 1}. We begin by figuring out how to place
the factors of 167 into the set. We can either give the factor of 167 to a+ 1, b+ 1,
or c+ 1, for a total of 3 choices.

Similarly, for the factor of 3, we have a total of 3 choices. On the other hand,
for the factor of 2, this is equivalent to placing 2 indistinguishable objects (factors
of 2) into 3 bins. Using the method of stars of bars, this can be done in

(
2+3−1
2−1

)
= 6

ways. Another way to verify this would be simple casework on the powers of 2 in
{a+ 1, b+ 1, c+ 1}: (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1).

In conclusion, there are 3 · 3 · 6 = 54 positive integer divisors of 20042004 that
are divisible by 2004 positive integers.

1.20 We proceed with the Euclidean Algorithm over the rationals:

x3 − 1 = (5x2 − 1)

(
1

5
x

)
+
x

5
− 1

(5x2 − 1) =
(x

5
− 1
)

(25x+ 125) + 124

1 =
5x2 − 1

124
−
(x

5
− 1
)( 25

124
x+

125

124

)
1 =

5x2 − 1

124
−
[
x3 − 1− 1

5
x
(
5x2 − 1

)]( 25

124
x+

125

124

)
1 =

(
5x2 − 1

) [ 1

124
+

1

5
x

(
25

124
x+

125

124

)]
−
(
x3 − 1

)( 25

124
x+

125

124

)
1 =

(
5x2 − 1

)( 5

124
x2 +

25

124
x+

1

124

)
−
(
x3 − 1

)( 25

124
x+

125

124

)
.

Therefore,

u(x) =
5

124
x2 +

25

124
x+

1

124
and v(x) =

−25x

124
− 125

124
.

1.21 We begin by applying the division algorithm repeatedly.

x8 − 1 = (x5 − 1)x3 + x3 − 1

x5 − 1 = (x3 − 1)x2 + x2 − 1

x3 − 1 = (x2 − 1)x+ x− 1

x2 − 1 = (x− 1)x+ 1.
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We then reverse the order of the division algorithm as follows:

x− 1 = x3 − 1− (x2 − 1)x

= x3 − 1−
(
x5 − 1− (x3 − 1)x2

)
x

=
(
x3 − 1

) (
1 + x3

)
−
(
x5 − 1

)
x

=
(
x8 − 1− (x5 − 1)x3

) (
1 + x3

)
−
(
x5 − 1

)
x

=
(
x8 − 1

) (
1 + x3

)
+
(
x5 − 1

) (
−x6 − x3 − x

)
.

Hence, polynomials that satisfy the above condition are u(x) = 1 + x3 and

v(x) = −x6 − x3 − x .

1.22 I claim the answer to be yes. Note that by the 1.1.5, we have

gcd(xm − 1, xn − 1) = xgcd(m,n) − 1 = x− 1,

since it is given in the problem statement that m and n are relatively prime.
Therefore, using Bezout’s Theorem for polynomials, there does indeed exist u, v ∈
Q[x] such that (xm − 1)u(x) + (xn − 1)v(x) = gcd(xm − 1, xn − 1) = x − 1. In
order to find such polynomials, one should follow the method used in the above
problem.

1.23 Assume for the sake of contradiction that there exists positive integers a, b
for which the above equation was true. Let gcd(a, b) = d. Now, set a = da1 and
b = db1 and substitute these into the equation above to get

dn (an1 − bn1 ) | dn (an1 + bn) =⇒ an1 − bn1 | an1 + bn1 .

Now, we know that gcd(a1, b1) = 1. However, if the above equation is true, then
we must also have

an1 − bn1 | (an1 + bn1 ) + (an1 − bn1 ) = 2an1
an1 − bn1 | (an1 + bn1 )− (an1 − bn1 ) = 2bn1 .

If an1 − bn1 divides both 2an1 and 2bn1 , it must then divide their greatest common
divisor:

an1 − bn1 | gcd(2an1 , 2b
n
1 ) = 2.

Since n > 1, we know that an1 − bn1 6= 1, 2, leading to a contradiction.

1.24 Note that the greatest common divisor of the first two terms must divide
the entire result. Therefore, we calculate it as follows:

gcd(2002 + 2, 20022 + 2) = gcd
(
2002 + 2, 20022 + 2− (2002 + 2) (2002− 2)

)
= gcd

(
2002 + 2, 20022 + 2−

(
20022 − 4

))
= gcd (2002 + 2, 6)

= 6.
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Therefore, the greatest common divisor of the sequence must divide 6. We now
prove that 6 divides every term in the sequence. Clearly, every term in the se-
quence is even, and furthermore, since 2002 ≡ 1 (mod 3), we have

2002k + 2 ≡ 1k + 2 ≡ 0 (mod 3).

Therefore, the answer is 6 .

1.25

gcd(n! + 1, (n+ 1)!) = gcd(n! + 1, (n+ 1)!− (n+ 1)(n! + 1))

= gcd(n! + 1,−(n+ 1))

= gcd(n! + 1, n+ 1).

Let p be a prime divisor of n+ 1. Unless n+ 1 is prime, we have

p ≤ n =⇒ n! + 1 ≡ 1 (mod p).

When n + 1 is prime, we have n! + 1 ≡ 0 (mod n + 1) (this fact will later be
proved in the Wilson’s theorem section). Therefore, the answer is

gcd(n! + 1, (n+ 1)!) =

{
1 if n+ 1 is composite

n+ 1 if n+ 1 is prime
.

1.26

gcd(23010 − 2, 23045 − 2) = 2
[
2gcd(3010−1,3045−1) − 1

]
= 2

[
230gcd(10,45)−1 − 1

]
= 2

(
2305−1 − 1

)
= 2305 − 2.

Therefore, x = 305.

1.27 We begin by using the formula for the sum of squares to rewrite the sum:

22 + 32 + · · ·+ n2 =
(
12 + 22 + 32 + · · ·+ n2

)
− 12

=
n(n+ 1)(2n+ 1)

6
− 1

=
2n3 + 3n2 + n− 6

6

=
(n− 1)(2n2 + 5n+ 6)

6
.
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We want to determine when this expression equals pk for some prime p. We begin
by computing the greatest common divisor of n− 1 and 2n2 + 5n+ 6. Note that

2n2 + 5n+ 6 = (n− 1)(2n+ 7) + 13.

Therefore, gcd(2n2 +5n+6, n−1) = gcd(13, n−1). Hence, n−1 and 2n2 +5n+6
can share no common divisors other than 13.

Hence, besides for a few special cases, there will be more than one prime that

divides into the expression
(n− 1)(2n2 + 5n+ 6)

6
. The exception cases are when

n− 1 divides into the denominator, 6. We therefore check n = 2, 3, 4, 7.

• When n = 2, then (n−1)(2n2+5n+6)
6

= 4 = 22.

• When n = 3, then (n−1)(2n2+5n+6)
6

= 13.

• When n = 4, then (n−1)(2n2+5n+6)
6

= 29.

• When n = 7, then (n−1)(2n2+5n+6)
6

= 139.

All of the numbers above are of the form pk, hence, the answer is n = 2, 3, 4, 7 .

1.28 First off, WLOG let m > n. Then we have

a2
n

+ 1 | a2n+1 − 1 | a2m − 1.

The last step follows from the fact that 2n+1 | 2m.
Let a2

m − 1 = q(a2
n

+ 1). Therefore,(
a2

m − 1
)

= q(a2
n

+ 1)− 2.

By the Euclidean Algorithm,

gcd(a2
m − 1, a2

n

+ 1) = gcd(a2
n

+ 1,−2) =

{
1 if a is even

2 if a is odd
.

1.29 Assume for the sake of contradiction that 2b − 1 | 2a + 1. We obviously
have a > b, so write a = bq + r using the division algorithm. We must have
gcd(2b − 1, 2a + 1) = 2b − 1. We then have

gcd(2b − 1, 2a + 1) = gcd(2b − 1, 2a + 1 + 2b − 1)

= gcd(2b − 1, 2b
(
2a−b + 1

)
= gcd(2b − 1, 2a−b + 1).

Repeating this process, we arrive at

gcd(2b − 1, 2a + 1) = gcd(2b − 1, 2a−qb + 1) = gcd(2b − 1, 2r + 1).

Since r < b, we have 2r + 1 ≤ 2b−1 + 1 < 2b − 1 for a, b > 2.

1.30 [Outline] Use induction and the factorization x6−x5 +x4−x3 +x2−x+1 =
(x+ 1)6 − 7x(x2 + x+ 1)2.
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