Soal dan Solusi UTS Analisis Real I 2024

Wildan Bagus Wicaksono

MATEMATIKA 2022

Question 1

Misalkan $A, B \subset \mathbb{R}$ keduanya tidak kosong dan terbatas.

- (a) Buktikan bahwa batas atas terkecil (sup A) adalah tunggal.
- (b) Buktikan $\sup(A + B) = \sup(A) + \sup(B)$.

Penyelesaian.

Karena A, B terbatas ke atas dan \mathbb{R} memiliki sifat supremum, maka sup A, sup B ada di \mathbb{R} .

- (a) Misalkan a dan a' adalah batas atas terkecil dari sup A. Ini berarti a dan a' keduanya adalah batas atas dari a. Karena a' batas atas dari A, maka $a \leq a'$. Karena a juga batas atas dari A, maka $a \leq a'$. Dari $a \leq a'$ dan $a' \leq a$ diperoleh bahwa a = a'. Terbukti batas atas terkecil adalah tunggal.
- (b) Akan dibuktikan bahwa $\sup(A+B) \leq \sup(A) + \sup(B)$. Ambil sebarang $(x+y) \in (A+B)$ di mana $x \in A$ dan $y \in B$. Karena $x \leq \sup A$ dan $y \leq \sup B$, maka $x+y \leq \sup(A) + \sup(B)$. Karena berlaku untuk sebarang $(x+y) \in (A+B)$, ini berarti $\sup(A) + \sup(B)$ adalah batas atas dari A+B. Mengingat $A+B \subseteq \mathbb{R}$ dan \mathbb{R} memiliki sifat supremum, maka $\sup(A+B)$ ada dan $\sup(A+B) \leq \sup(A) + \sup(B)$. (1)

Akan dibuktikan bahwa $\sup(A) + \sup(B) \leq \sup(A+B)$. Ambil sebarang $\varepsilon > 0$, maka terdapat $x^* \in A$ dan $y^* \in B$ sedemikian sehingga $\sup(A) - \frac{\varepsilon}{2} < x^*$ dan $\sup(B) - \frac{\varepsilon}{2} < y^*$. Ini berarti $\sup(A) + \sup(B) - \varepsilon < x^* + y^*$. Mengingat $x^* + y^* \in (A+B)$, maka

$$\sup(A) + \sup(B) - \varepsilon < x^* + y^* \le \sup(A + B) \implies \sup(A) + \sup(B) - \varepsilon < \sup(A) + \sup(B).$$

Karena berlaku untuk sebarang $\varepsilon > 0$, maka $\sup(A) + \sup(B) \le \sup(A + B)$. (2) Karena (1) dan (2), terbukti bahwa $\sup(A) + \sup(B) = \sup(A + B)$.

V

Question 2

Penutup (closure) himpunan E didefinisikan sebagai $\overline{E} = E \cup E'$ di mana E' himpunan semua titik limit E. Secara umum berlaku

$$\overline{A \cap B} \subset \overline{A} \cap \overline{B}$$
.

Jika A=(0,1) dan B=(1,2) masing-masing interval terbuka di \mathbb{R} , buktikan bahwa $\overline{A\cap B}\subset \overline{A}\cap \overline{B}$.

Penyelesaian.

Perhatikan bahwa $A \cap B = \emptyset$.

Klaim 1.
$$(A \cap B)' = \emptyset$$
.

Bukti. Andaikan tidak, misalkan $p \in (A \cap B)'$. Untuk setiap $\varepsilon > 0$ terdapat $y \neq p$ sedemikian sehingga $y \in N_{\varepsilon}(x) \cap (A \cap B) \implies y \in A \cap B$, kontradiksi karena $A \cap B = \emptyset$. Terbukti $(A \cap B)' = \emptyset$.

Klaim 2. Setiap $x \in (0,1)$ merupakan titik limit A.

Bukti. Ambil sebarang $\varepsilon > 0$. Untuk $\varepsilon \leq \min\{x, 1 - x\}$, ini berarti $\varepsilon \leq x$ dan $\varepsilon \leq 1 - x$ yang berarti $0 \leq x - \varepsilon < x + \varepsilon \leq 1$. Akan ditinjau untuk $x + \frac{\varepsilon}{2}$. Perhatikan bahwa

$$0 < x - \varepsilon < x < x + \frac{\varepsilon}{2} < x + \varepsilon < 1 \implies 0 < x + \frac{\varepsilon}{2} < 1, \quad x - \varepsilon < x + \frac{\varepsilon}{2} < x + \varepsilon, \quad x \neq x + \frac{\varepsilon}{2}.$$

Jadi, $x + \frac{\varepsilon}{2} \in A$ dan $x + \frac{\varepsilon}{2} \in N_{\varepsilon}(x)$, kemudian $x + \frac{\varepsilon}{2} \neq x$ sehingga diperoleh $x + \frac{\varepsilon}{2} \in [N_{\varepsilon}(x) \cap A] \setminus \{x\}$ Jadi, $[N_{\varepsilon}(x) \cap A] \setminus \{x\}$ tak kosong. Untuk $\varepsilon > \min\{x, 1 - x\}$, maka $\varepsilon > x$ atau $\varepsilon > 1 - x$. Jika $\varepsilon > x$, maka $x - \varepsilon < 0$. Tinjau bahwa

$$x - \varepsilon < 0 < \frac{x}{2} < x < x + \varepsilon \implies x - \varepsilon < \frac{x}{2} < x + \varepsilon \implies \frac{x}{2} < N_{\varepsilon}(x)$$

Selain itu, $0 < \frac{x}{2} < x < 1 \implies 0 < \frac{x}{2} < 1$ sehingga $\frac{x}{2} \in A$ dan jelas $\frac{x}{2} \neq x$. Jadi, $\frac{x}{2} \in [N_{\varepsilon}(x) \cap A] \setminus \{x\}$ yang berarti $[N_{\varepsilon}(x) \cap A] \setminus \{x\}$ tak kosong. Jika $\varepsilon > 1 - x$ yang berarti $x + \varepsilon > 1$. Akan ditinjau $\frac{x+1}{2}$. Perhatikan bahwa x < 1 berlaku

$$x - \frac{x+1}{2} = \frac{x-1}{2} < 0$$
 dan $0 < \frac{x+1}{2} < \frac{1+1}{2} = 1$

sehingga diperoleh

$$x - \varepsilon < x < \frac{x+1}{2} < 1 < x + \varepsilon \implies x - \varepsilon < \frac{x+1}{2} < x + \varepsilon, \quad 0 < \frac{x+1}{2} < 1, \quad x \neq \frac{x+1}{2}.$$

Ini menunjukkan $\frac{x+1}{2} \in [N_{\varepsilon}(x) \cap A] \setminus \{x\}$ yang berarti $[N_{\varepsilon}(x) \cap A] \setminus \{x\}$ tak kosong.

Karena untuk setiap $\varepsilon > 0$ berlaku $[N_{\varepsilon}(x) \cap A] \setminus \{x\}$ tak kosong, maka $x \in A'$.

Klaim 3. $0 \in A'$.

Bukti. Ambil sebarang $\varepsilon > 0$. Jika $0 < \varepsilon \le 1$, tinjau bahwa

$$-\varepsilon < 0 < \frac{\varepsilon}{2} < \varepsilon \le 1 \implies -\varepsilon < \frac{\varepsilon}{2} < \varepsilon, \quad 0 < \frac{\varepsilon}{2} < 1, \quad \frac{\varepsilon}{2} \ne 0.$$

Jadi, $\frac{\varepsilon}{2} \in [N_{\varepsilon}(0) \cap A] \setminus \{0\}$ sehingga $[N_{\varepsilon}(0) \cap A]$ tak kosong. Jika $\varepsilon > 1$, tinjau $-\varepsilon < 0 < \frac{1}{2} < 1 < \varepsilon$ yang berarti $-\varepsilon < \frac{1}{2} < \varepsilon$, $0 < \frac{1}{2} < 1$, dan jelas $0 \neq \frac{1}{2}$. Jadi, $\frac{1}{2} \in [N_{\varepsilon}(0) \cap A] \setminus \{0\}$ yang berarti $[N_{\varepsilon}(0) \cap] \setminus \{0\}$ tak kosong untuk setiap $\varepsilon > 0$. Terbukti $0 \in A'$.

Klaim 4. $1 \in A'$.

Bukti. Ambil sebarang $\varepsilon > 0$. Jika $0 < \varepsilon \le 1$, maka

$$0 \leq 1 - \varepsilon < 1 - \frac{\varepsilon}{2} < 1 < 1 + \varepsilon \implies 1 - \varepsilon < 1 - \frac{\varepsilon}{2} < 1 + \varepsilon, \quad 0 < 1 - \frac{\varepsilon}{2} < 1, \quad 1 \neq 1 - \frac{\varepsilon}{2}.$$

Ini berarti $1-\frac{\varepsilon}{2}\in [N_{\varepsilon}(1)\cap A]\setminus \{1\}.$ Jika $\varepsilon>1,$ tinjau

$$1-\varepsilon < 0 < \frac{1}{2} < 1 < 1+\varepsilon \implies 1-\varepsilon < \frac{1}{2} < 1+\varepsilon, \quad 0 < \frac{1}{2} < 1.$$

Jadi, $\frac{1}{2} \in [N_{\varepsilon}(1) \cap A] \setminus \{1\}$. Ini membuktikan bahwa $[N_{\varepsilon}(1) \cap A] \setminus \{1\}$ tak kosong untuk setiap $\varepsilon > 0$ dan terbukti $1 \in A'$.

Klaim 5. Untuk x < 0 atau x > 1, maka $x \notin A'$.

Bukti.Akan ditinjau saat x<0,pilih $\varepsilon=-\frac{x}{2}>0.$ Perhatikan bahwa

$$x + \varepsilon = x - \frac{x}{2} = \frac{x}{2} < 0 \implies x + \varepsilon < 0$$

yang berarti $N_{\varepsilon}(x)$ disjoin dengan A. Akibatnya, $N_{\varepsilon}(x) \cap A = \emptyset$ yang berarti terdapat $\varepsilon > 0$ sedemikian sehingga $[N_{\varepsilon}(x) \cap A] \setminus \{x\} = \emptyset$. Jadi, $x \notin A'$.

Akan ditinjau saat x > 1. Pilih $\varepsilon = \frac{x-1}{2} > 0$, perhatikan bahwa

$$x - \varepsilon = x - \frac{x - 1}{2} = \frac{x + 1}{2} > \frac{1 + 1}{2} = 1 \implies x - \varepsilon > 1$$

yang berarti $N_{\varepsilon}(x)$ disjoin dengan A. Jadi, terdapat $\varepsilon > 0$ yang memenuhi $[N_{\varepsilon}(x) \cap A] \setminus \{x\} = \emptyset$. Jadi, $x \in A'$.

Dari Klaim 2 hingga Klaim 5 membuktikan bahwa A' = [0, 1] dan secara analog diperoleh B' = [1, 2]. Jadi,

$$\overline{A} = A \cup A' = [0,1], \quad \overline{B} = B \cup B' = [1,2] \implies \overline{A} \cap \overline{B} = \{1\}$$

yang mana membuktikan bahwa $\overline{A\cap B}=\varnothing\subset\{1\}=\left(\overline{A}\cap\overline{B}\right).$

Question 3

Misalkan himpunan A terbilang dan himpunan bagian sejati dari A. Buktikan bahwa himpunan B ekuivalen dengan himpunan A.

Penyelesaian.

Karena $B \subset A$ dan A terbilang, maka B terbilang. Maka terdapat fungsi korespondensi 1-1 f, g dengan $f: A \to \mathbb{N}$ dan $g: \mathbb{N} \to B$. Akibatnya, $g \circ f: A \to B$ juga korespondensi 1-1 dan terbukti $A \sim B$.