Soal dan Solusi UAS Analisis Real I 2023

Wildan Bagus Wicaksono

MATEMATIKA 2022

Question 1

Diberikan $\langle s_n \rangle$ barisan bilangan real dengan $s_n > 0$. Jika $\langle s_n \rangle$ konvergen ke s, buktikan

$$\lim_{n \to \infty} \sqrt{s_n} = \sqrt{s}.$$

Penyelesaian.

Ambil sebarang $\varepsilon > 0$. Berdasarkan definisi, terdapat bilangan asli K yang memenuhi $|s_n - s| < \varepsilon$ untuk setiap $n \ge K$.

Jika s=0 dan pilih $\varepsilon:=\varepsilon^2$. Terdapat bilangan asli N yang memenuhi $|s_n-0|<\varepsilon^2 \Longrightarrow |s_n|<\varepsilon^2$ untuk setiap $n\geq N$. Ini berarti $\left|\sqrt{s_n}\right|=\sqrt{|s_n-0|}<\varepsilon$ untuk setiap $n\geq N$. Ini menunjukkan $\lim_{n\to\infty}\sqrt{s_n}=0$.

Jika s>0 dan pilih $\varepsilon:=\left(\sqrt{s+1}+\sqrt{s}\right)\varepsilon$, terdapat bilangan asli M yang memenuhi $|s_n-s|<\left(\sqrt{s}+\sqrt{s+1}\right)\varepsilon$ untuk setiap $n\geq M$. Di sisi lain, terdapat bilangan asli M' yang memenuhi $|s_n-s|<1$ untuk setiap bilangan asli $n\geq M'$. Menggunakan ketaksamaan segitiga $|a-b|\geq a-b$ dieproleh

$$1 > |s_n - s| = |s - s_n| \ge s - s_n \implies s_n > s + 1.$$

Pilih $T = \sup\{M, M'\}$. Untuk setiap $n \ge T$,

$$\left|\sqrt{s_n} - \sqrt{s}\right| = \left|\frac{s_n - s}{\sqrt{s_n} + \sqrt{s}}\right| = \frac{|s_n - s|}{\sqrt{s+1} + \sqrt{s}} < \frac{\left(\sqrt{s} + \sqrt{s+1}\right)\varepsilon}{\sqrt{s} + \sqrt{s+1}} = \varepsilon.$$

Ini membuktikan $\lim_{n\to\infty} \sqrt{s_n} = \sqrt{s}$.

Question 2

Diberikan fungsi bernilai real f(x)=c, g(x)=x, dan $h(x)=x^3$ yang didefinisikan pada $\mathbb R$ dengan c suatu bilangan real yang ditentukan. Gunakan langsung definisi limit fungsi untuk membuktikan $\lim_{x\to 2} f(x)=c$, $\lim_{x\to 2} g(x)=2$, dan $\lim_{x\to 2} h(x)=8$.

Penyelesaian.

Akan dibuktikan $\lim_{x\to 2} f(x) = c$. Ambil sebarang $\varepsilon > 0$. Pilih $\delta = 1$, maka untuk setiap x yang memenuhi $0 < |x-2| < \delta = 1$ berlaku $|f(x)-c| = |c-c| = 0 < \varepsilon$, terbukti.

Akan dibuktikan bahwa $\lim_{x\to 2}g(x)=x$. Ambil sebarang $\varepsilon>0$. Pilih $\delta=\varepsilon$, maka untuk setiap x yang memenuhi $0<|x-2|<\delta=\varepsilon$ berlaku $|f(x)-2|=|x-2|<\varepsilon$, terbukti.

Akan dibuktikan $\lim_{x\to 2}h(x)=8$. Ambil sebarang $\varepsilon>0$. Perhatikan bahwa jika x memenuhi 0<|x-2|<1 berlaku $0< x-2<1\implies 2< x<3$. Pilih $\delta=\min\left\{1,\frac{\varepsilon}{19}\right\}$, maka untuk setiap x yang memenuhi $0<|x-2|<\delta$ berlaku

$$|f(x) - 8| = |x^3 - 8| = |(x - 2)(x^2 + 2x + 4)| = |x - 2||x^2 + 2x + 4| < \frac{\varepsilon}{19}(3^2 + 2 \cdot 3 + 4) = \varepsilon.$$

Terbukti.

Question 3

Jika f fungsi kontinu pada ruang metrik (X, d) kedalam \mathbb{R} , buktikan fungsi |f| juga kontinu pada X.

Penyelesaian.

Diketahui f kontinu di X. Ambil sebarang $p \in X$. Untuk setiap $\varepsilon > 0$ terdapat $\delta > 0$ sedemikian sehingga untuk setiap $x \in X$ yang memenuhi $d(x,p) < \delta$ berlaku $|f(x) - f(p)| < \varepsilon$. Akan dibuktikan bahwa |f| kontinu di p. Menggunakan ketaksamaan segitiga $||a| - |b|| \le |a - b|$, untuk setiap $x \in X$ yang memenuhi $d(x,p) < \delta$ berlaku $||f(x)| - |f(p)|| \le |f(x) - f(p)| < \varepsilon \implies ||f(x)| - |f(p)|| < \varepsilon$. Terbukti.

Question 4

Buktikan fungsi $f(x) = x^2$ kontinu seragam pada himpunan terbatas $E \subset \mathbb{R}$.

Penyelesaian.

Karena E terbatas, terdapat bilangan real M>0 yang memenuhi $|x|\leq M$ untuk setiap $x\in E$. Ambil sebarang $\varepsilon>0$. Pilih $\delta=\frac{\varepsilon}{2M}>0$ dan tinjau $x,y\in E$ yang memenuhi $0<|x-y|<\delta=\frac{\varepsilon}{2M}$. Menggunakan ketaksamaan segitiga $|a+b|\leq |a|+|b|$, berlaku

$$|f(x) - f(y)| = |x^2 - y^2| = |(x - y)(x + y)| = |x - y||x + y| \le |x - y|(|x| + |y|) < \frac{\varepsilon}{2M} \cdot (M + M) = \varepsilon,$$

terbukti.